依然拿yolov5l v6.0版本来讲解
1. yaml文件
以下是yolov5l.yaml文件内容
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
nc:分类的类别数量;
depth_multiple:每一层的深度,最终的层数需要乘上这个系数取整;
width_multiple:每一层的输出通道数,最终的输出通道同样需要乘上这个系数;
anchors:有三个尺度的anchor最为预测的候选框,每一个尺度对应三个anchor;
backbone:
…
head:
…
backbone,head中为列表元素,每一个列表元素对应是一层结构,其中包含四个元素为:[from, number, module, args]
举个例子如:[-1, 1, Conv, [512, 1, 1]]
from=-1,表示当前层的输入为上一层的输出;
number=1,表示当前层只重复一次(depth_multiple=1的时候);
module=Conv,表示已经定义好的Conv类,其已经定义好了,当前Conv是在common.py中定义的执行的是ConvBNSilu操作,具体可到代码里看;
args=[512, 1, 1],是Conv这个类必要的三个参数,具体一会看代码
2. yolo.py代码
class Model就是构建的模型,其主要问题都已经在代码中注释,可以自己去debug看一下结果。
import torch
import thop
from common import *
from copy import deepcopy
import yaml
from utils import make_divisible, check_anchor_order, initialize_weights, scale_img, feature_visualization, time_sync, model_info
import logging
import math
logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)
""" 代码仍然是官方的代码,增加了一些注释去理解,删除一些没有用到的模块,这里仍然使用yolov5l 结构"""
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
""" head 中的 detect层,用来输出最后预测结果 """
def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
super().__init__()
self.nc = nc
self.no = nc + 5
self.nl = len(anchors) # 有多少个检测检测头,一般三个就是20*20, 40*40,80*80 三个尺度
self.na = len(anchors[0]) // 2 # 目前也是3
self.grid