yolov5详解(二):通过yaml文件构建完整模型

依然拿yolov5l v6.0版本来讲解

1. yaml文件

以下是yolov5l.yaml文件内容

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

nc:分类的类别数量;
depth_multiple:每一层的深度,最终的层数需要乘上这个系数取整;
width_multiple:每一层的输出通道数,最终的输出通道同样需要乘上这个系数;
anchors:有三个尺度的anchor最为预测的候选框,每一个尺度对应三个anchor;
backbone:

head:

backbone,head中为列表元素,每一个列表元素对应是一层结构,其中包含四个元素为:[from, number, module, args]
举个例子如:[-1, 1, Conv, [512, 1, 1]]
from=-1,表示当前层的输入为上一层的输出;
number=1,表示当前层只重复一次(depth_multiple=1的时候);
module=Conv,表示已经定义好的Conv类,其已经定义好了,当前Conv是在common.py中定义的执行的是ConvBNSilu操作,具体可到代码里看;
args=[512, 1, 1],是Conv这个类必要的三个参数,具体一会看代码

2. yolo.py代码

class Model就是构建的模型,其主要问题都已经在代码中注释,可以自己去debug看一下结果。

import torch
import thop
from common import *
from copy import deepcopy
import yaml
from utils import make_divisible, check_anchor_order, initialize_weights, scale_img, feature_visualization, time_sync, model_info
import logging
import math

logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)


""" 代码仍然是官方的代码,增加了一些注释去理解,删除一些没有用到的模块,这里仍然使用yolov5l 结构"""


class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    """ head 中的 detect层,用来输出最后预测结果 """
    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
        super().__init__()
        self.nc = nc
        self.no = nc + 5
        self.nl = len(anchors)  # 有多少个检测检测头,一般三个就是20*20, 40*40,80*80 三个尺度
        self.na = len(anchors[0]) // 2  # 目前也是3
        self.grid 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

idealmu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值