激活函数是神经网络中的非线性函数,用于在神经元之间引入非线性关系,使模型能够学习和表示复杂的数据模式,常见的激活函数有 Sigmoid、Tanh、ReLU 和 Leaky ReLU。
损失函数则是评估模型预测值与真实值之间的差异,通过最小化损失函数来优化模型参数,常见的损失函数有 MSE和交叉熵损失(Cross-Entropy Loss)。
通过合理组合激活函数与损失函数,并配合PyTorch的自动微分机制,能够构建出高效可靠的深度学习模型。
一、激活函数
激活函数(Activation Function)是什么?激活函数是神经网络中的非线性函数,用于在神经元之间引入非线性关系,从而使模型能够学习和表示复杂的数据模式。
*如果神经网络没有像Relu这样的激活函数(也叫非线性激活函数),神经网络每层就只包含两个线性运算(仿射变换),即点积与加法:output = dot(input, W) + b。这样多个线性层堆叠后,其整体运算仍然是线性的,增加层数并不能扩展假设空间。**为了获得更丰富的假设空间,需要引入非线性因素,即激活函数。*
Sigmoid和Tanh是早期激活函数,但易梯度消失。ReLU及其改进版(如Leaky ReLU等)解决了此问题,常用于隐藏层。Softmax则专用于多分类输出层,转输出为概率分布。
一、Sigmoid激活函数
将输入值压缩到(0, 1)之间,常用于二分类问题的输出层。但存在梯度消失问题,且输出不以零为中心。
二、Tanh激活函数
将输入值压缩到(-1, 1)之间,输出均值为0,更适合隐藏层。但同样存在梯度消失问题。
三、ReLU激活函数
当输入大于0时,输出等于输入;当输入小于0时,输出为0。*具有计算简单、梯度消失问题较轻的优点,是隐藏层常用的激活函数。但存在神经元死亡问题。*
四、Leaky ReLU激活函数
解决了ReLU在输入小于0时梯度为0的问题,允许小的梯度流过。
五、Softmax激活函数
将输入向量中的每个元素映射到(0, 1)区间内,并且所有输出元素的和为1。*用于多分类问题的输出层,将神经网络的输出转换为概率分布。*
PyTorch如何定义激活函数?PyTorch通过torch.nn
模块提供了多种标准激活函数,可直接调用内置激活函数。
# ReLU:适合隐藏层,缓解梯度消失。nn.ReLU() # LeakyReLU:解决“神经元死亡”问题。nn.LeakyReLU(negative_slope=0.01)# Sigmoid:输出概率(0-1),用于二分类输出层。nn.Sigmoid()# Tanh:输出范围(-1,1),适合RNN隐藏层。nn.Tanh()# Softmax:多分类概率归一化。nn.Softmax(dim=1)# GELU:BERT等模型常用,平滑ReLU变体。nn.GELU()
二、损失函数
损失函数(Loss Function)是什么?在深度学习中,损失函数则是评估模型预测值与真实值之间的差异,通过最小化损失函数来优化模型参数。
模型通过损失值评估预测性能,并据此指导优化方向。为了优化模型参数,神经网络采用梯度下降等优化算法,通过不断减少损失值,逐步调整模型参数。在选择损失函数时,需考虑任务类型、数据分布以及特定需求,常见的损失函数类型包括均方误差和交叉熵损失等。
一、交叉熵损失(Cross Entropy Loss)
用于分类问题,衡量模型预测概率分布与真实概率分布之间的差异。包括二分类交叉熵损失和多类别交叉熵损失。
*二、均方误差(MSE Loss)*
用于回归问题,计算预测值与真实值之间差的平方的平均值。
PyTorch如何定义损失函数?PyTorch通过torch.nn
模块提供了丰富的内置损失函数,涵盖回归、分类、生成等任务,可直接调用内置损失函数。
# 回归任务:均方误差(MSE),对异常值敏感,梯度稳定 nn.MSELoss() # 回归任务:平均绝对误差(L1),对异常值鲁棒,梯度恒定nn.L1Loss() # 分类任务:交叉熵损失(多分类),自动包含Softmax,适合类别概率分布 nn.CrossEntropyLoss() # 分类任务:二元交叉熵(二分类),结合Sigmoid,避免数值溢出nn.BCEWithLogitsLoss() # 生成任务:KL散度损失,衡量概率分布差异(如生成模型) nn.KLDivLoss()
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。