现有文档 RAG 评测都在不足:数据太小、查询太假、证据太单一。华南理工&华科推出 DOUBLE-BENCH——迄今最大规模、多语言、多模态、多跳查询的文档 RAG 实战考场,用 5 168 条人工校验 query 把 9 个 embedding、4 个 MLLM、4 个端到端框架统统拉到现实场景下评测,结果:检索仍是最大瓶颈,模型普遍“过度自信”地胡说八道。
说到多模态大模型,国内快手也开源了Keye-VL-1.5-8B(国产大模型越来越好,就在昨天Claude点名全面封禁中国公司,离大谱),可本地部署,大家可以试试!
🔍 1 现有评测的不足
图 2:主流 benchmark 查询示例,信息不足或已提前泄露答案。
问题 | 典型案例 | 后果 |
---|---|---|
① 评测面过窄 | 只测 embedding 或只测 VQA | 看不到系统级瓶颈 |
② 假设用户开卷 | 直接给出目标页、文件名 | 与现实检索场景脱节 |
③ 证据唯一幻觉 | 单页 synthetic query | 忽略多页均可回答 |
④ 多跳造假 | 把单跳硬拼成“伪多跳” | 高估模型推理能力 |
🧪 2 DOUBLE-BENCH 长啥样?
维度 | 规模 | 备注 |
---|---|---|
文档 | 3 276 份 | 72 880 页 |
语言 | 6 种 | 中/英/西/法/日/阿 |
类型 | 4 类 | PDF、扫描件、幻灯、HTML |
查询 | 5 168 条 | 2 500 单跳 + 2 668 多跳(2-3 跳) |
证据 | 100 % 人工复核 | 单跳 set-of-evidence,多跳 chain-of-evidence |
图 4:语料与语言分布,外圈为语言占比。
⚙️ 3 三步打造“真”考题
图 3:DOUBLE-BENCH 构建流水线,红框为人工介入环节。
1️⃣ 元数据收集与清洗
- 10–50 页文档,GPT-4o 判语言,Docling & MinerU 做模态拆分(正文/表格/图)。
2️⃣ 单跳查询合成 - 四原则:自包含、禁止泄露源、聚焦显著模态、多样自然。
- 迭代 refine:若检索返回 >5 候选页,则自动加入区分细节再生成,直到 ≤5。
3️⃣ 多跳查询合成 - LightRAG 建知识图谱 → 按“意图游走”选路径 → 逐跳替换实体并链式拼接。
- 人工审核逻辑严密性、答案唯一性、语法自然度。
📊 4 实验结果
4.1 检索榜
表 3:主流 embedding 在 DOUBLE-BENCH 上的细粒度结果。
- 文本与视觉 embedding 差距已缩小到 2% 以内;多跳仍集体掉 20+ 点。
4.2 端到端 RAG 框架榜
表 4:RAG 框架检索与回答准确率对比。
- 检索决定上限:colqwen-gen 靠检索优势,在多跳上反超 MDocAgent。
- 过度自信现象:MDocAgent/ViDoRAG 即使没召回证据也强行回答,幻觉率 30–40 %。
4.3 MLLM 裸跑 vs 给证据
- 充分说明 DOUBLE-BENCH 未被数据污染,模型靠“背题库”寸步难行。
表 5:MLLM 在“裸跑”与“开卷”下的准确率。
https://arxiv.org/pdf/2508.03644
如何学习大模型 AI ?
我国在AI大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着Al技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国Al产业的创新步伐。加强人才培养,优化教育体系,国际合作并进,是破解困局、推动AI发展的关键。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
2025最新大模型学习路线
明确的学习路线至关重要。它能指引新人起点、规划学习顺序、明确核心知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
对于从来没有接触过AI大模型的同学,我帮大家准备了从零基础到精通学习成长路线图以及学习规划。可以说是最科学最系统的学习路线。
针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
大模型经典PDF书籍
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路!
配套大模型项目实战
所有视频教程所涉及的实战项目和项目源码等
博主介绍+AI项目案例集锦
MoPaaS专注于Al技术能力建设与应用场景开发,与智学优课联合孵化,培养适合未来发展需求的技术性人才和应用型领袖。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
为什么要学习大模型?
2025人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
适合人群
- 在校学生:包括专科、本科、硕士和博士研究生。学生应具备扎实的编程基础和一定的数学基础,有志于深入AGI大模型行业,希望开展相关的研究和开发工作。
- IT行业从业人员:包括在职或失业者,涵盖开发、测试、运维、产品经理等职务。拥有一定的IT从业经验,至少1年以上的编程工作经验,对大模型技术感兴趣或有业务需求,希望通过课程提升自身在IT领域的竞争力。
- IT管理及技术研究领域人员:包括技术经理、技术负责人、CTO、架构师、研究员等角色。这些人员需要跟随技术发展趋势,主导技术创新,推动大模型技术在企业业务中的应用与改造。
- 传统AI从业人员:包括算法工程师、机器视觉工程师、深度学习工程师等。这些AI技术人才原先从事机器视觉、自然语言处理、推荐系统等领域工作,现需要快速补充大模型技术能力,获得大模型训练微调的实操技能,以适应新的技术发展趋势。
课程精彩瞬间
大模型核心原理与Prompt:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为Al应用开发打下坚实基础。
RAG应用开发工程:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。
Agent应用架构进阶实践:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
模型微调与私有化大模型:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。
顶尖师资,深耕AI大模型前沿技术
实战专家亲授,让你少走弯路
一对一学习规划,职业生涯指导
- 真实商业项目实训
- 大厂绿色直通车
人才库优秀学员参与真实商业项目实训
以商业交付标准作为学习标准,具备真实大模型项目实践操作经验可写入简历,支持项目背调
大厂绿色直通车,冲击行业高薪岗位