自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1440)
  • 收藏
  • 关注

原创 TableRAG:让表格保持“原汁原味”的 4 步多跳问答框架

在 RAG 系统中,传统问答系统在处理含文本与表格的异构文档时,常令用户困扰。华为云 BU 研究人员创新性地提出 TableRAG 框架,采用 SQL 执行与文本检索混合模式,尝试破解这一难题。在 HeteQA 基准测试集上,TableRAG 整体准确率相较于最佳基线方法提升超 10%,且能在 5 步内解决约 93.55% 的问题,为异构文档问答带来创新方法。

2025-07-23 16:30:28 785

原创 AI 智能体开发框架大比拼:7 大主流开源平台和框架深度拆解对比

这两年,AI越来越火,在生活和工作里到处都能看到它的影子。AI 智能体就像一个个超级能干的数字小帮手,能自己 “看” 懂各种信息,快速做出判断,还能帮我们完成各种复杂任务。不管是处理数据、写文案,还是安排工作流程,它们都能轻松搞定,大大提高了工作效率。

2025-07-23 15:19:21 739

原创 哈佛等团队多模态医学图像新突破!登上Nature正刊!

多模态医学图像**正成为医学AI的热门方向。近期,哈佛等团队在《Nature》发表论文,展示生成式AI在多模态医学影像解读中的突破应用,极具研读价值。

2025-07-23 15:12:25 724

原创 AI智能体的上下文工程:Manus的构建心得

在 **Manus**[1] 项目伊始,我和我的团队面临一个关键抉择:是应该使用开源基础模型来训练一个端到端的智能代理(agentic model),还是基于前沿模型(frontier models)的“上下文学习” (in-context learning) 能力来构建智能代理?

2025-07-22 19:46:14 724

原创 RAG 三剑客:动图 + 表格秒懂传统 RAG、HyDE 与 Graph RAG 的核心差异和应用场景

传统 RAG** 的核心思想是在生成响应之前,先从一个大型语料库中检索出相关的文档或信息,然后将这些检索到的信息作为上下文输入给大型语言模型 (LLM),使其生成更准确、更相关、且减少幻觉的回答。

2025-07-22 19:44:20 576

原创 基于 LangGraph 构建 Open Deep Research 架构设计与落地实践

Deep Research 已经成为最受欢迎的 AI 智能体应用之一。OpenAI、Anthropic、Perplexity 和谷歌都推出了 Deep Research 产品,这些产品能够利用各种上下文生成全面的报告。此外,还有很多开源的实现版本。

2025-07-22 19:42:35 607

原创 一文掌握:AI Agent Prompt是什么?智能体Prompt如何设计?

AI Agent的能力,大多藏在Prompt里,可以说Prompt决定了智能体的行为准则。它是智能体的 “行为指南”,定义了角色、任务与决策逻辑。没有好的Prompt,再强的模型也是“无头苍蝇”,反之精准的Prompt,能让Agent从机械的执行流程中解放出来,升级为可以灵活应变的智能工具,是低成本释放AI潜力的核心钥匙,更是中小企业的福音!

2025-07-21 19:46:06 822

原创 Manus 揭秘自己的7大核心技术:上下文工程架构设计与落地经验

随着 AI 智能体技术的快速发展,如何高效构建和优化 AI 智能体系统已成为业界关注的焦点。本文是对 7月19日 Manus 联合创始人兼首席科学家季逸超(Yichao 'Peak' Ji)在撰写的《Context Engineering for AI Agents: Lessons from Building Manus》一文的整理。

2025-07-21 19:44:13 501

原创 【Agent专题】Agent架构设计:12大原则详解,从0到1构建可落地的Agent系统

在AI智能体(Agent)的大潮下,构建一个真正“可用、可扩展、可维护”的AI Agent系统不再是技术大厂的专属游戏。

2025-07-21 19:43:03 634

原创 拆解Agent项目:MindSearch

这是去年出现的一个项目,这个项目的核心理念是让AI将复杂问题分解为多个子问题,并行搜索获取信息,最后综合所有信息给出完整答案。

2025-07-20 10:45:00 1013

原创 知识|AI智能体(AI Agent)从原理到应用

各种场合提到AI智能体(AI Agent),那么AI智能体究竟是什么呢?本文简单整理通俗的解读,给大家做参考。

2025-07-19 10:45:00 819

原创 工作流框架-LangGraph

LangGraph 是由 LangChain 团队开发的一个开源框架,旨在帮助开发者构建基于大型语言模型(LLM)的复杂、有状态、多主体的应用。它通过将工作流表示为图结构(graph),提供了更高的灵活性和控制能力,特别适合需要循环逻辑、状态管理以及多主体协作的场景,比如智能代理(agent)和多代理工作流。

2025-07-18 21:50:52 772

原创 论文浅尝 | 细粒度的多模态知识图谱实体表示学习(AAAI2024)

近年来,图神经网络(GNN)在图结构数据上取得了巨大成功,特别是在预训练-微调的学习范式下,这种方式能够利用大规模未标记的图数据进行模型预训练,再在下游任务上进行参数微调,从而显著提高模型性能。然而,这种范式通常假设预训练数据与下游任务数据之间存在结构一致性,即预训练学习到的图结构模式能有效迁移到下游任务。但在实际场景中,由于不同领域数据间存在本质差异,如社交网络、分子结构、生物网络等,其图结构模式差异非常明显,导致传统的微调方法无法有效迁移,甚至会造成负迁移问题,出现微调后的模型性能不如直接训练的情况。

2025-07-17 19:51:24 868

原创 动手学Agent:基础概念

虽然大家都在说2025年是Agent的元年,但如此高频的一个词,就跟好多计算机里面的概念一样,也是没有严格定义的。

2025-07-17 19:50:01 740

原创 字节 MemAgent 让 LLM 拥有“无限记忆”

不同于传统方法试图扩展上下文窗口或使用稀疏/线性注意力,MemAgent 把超长文档看作连续证据流:模型每次只读入一个固定长度的文本块,并维护一个固定长度的可覆写记忆槽(memory slot)。该记忆以普通 token 形式存在于上下文窗口内,无需修改位置编码或引入额外模块,即可让“8K 训练窗口”在推理时平滑外推到百万级 token,实现 O(N) 线性复杂度。

2025-07-17 19:47:54 596

原创 如何快速看透现象和行为背后的模型?

我看着远处的高楼、匆匆而过的人群,回想着这一天的行为,思考着市场的变化……城市像一个庞大而复杂的系统,在有序与混沌之间脉动前行。

2025-07-16 21:01:01 629

原创 2025年最强的开源AI Agent可视化编排工具深度盘点!

在AI Agent的世界里,开源意味着什么?

2025-07-16 20:20:10 996

原创 基于 LLaMA-Factory 通过 LoRA 微调 Qwen2

LLaMA-Factory是一个由北京航空航天大学的郑耀威开发的开源框架,作为一个功能强大且高效的大模型微调框架,通过其用户友好的界面和丰富的功能特性,为开发者提供了极大的便利。

2025-07-16 20:19:07 868

原创 无需数据标注:RLSC 如何用“自我信心”优化语言模型

RLSC 作为一种强化学习微调方法,它无需外部标签、偏好模型或手动奖励设计,仅通过模型自身的“信心”作为奖励信号,就能显著提升性能。这一创新方法不仅为LLM的优化提供了新思路,且训练高效、成本较低。

2025-07-16 20:18:09 728

原创 AI Agent vs. Agentic AI | 一文带你了解:什么是AI Agent,什么是Agentic AI?

目前AI Agent特别火,但是新技术常常伴随着混乱的术语和炒作。**那么你知道AI Agent和Agentic AI之间的区别吗?**搞清楚两者之间的关系,不仅关乎学术的严谨,也关乎着下一代AI技术的的发展。本文将详细带你了解AI Agent和Agentic AI这两个概念。具体内容安排如下:

2025-07-15 19:46:26 775

原创 一文说明白Context Engineering:AI智能体的动态语境构建术

当你在ChatGPT中输入指令时,你已经接触了最基础的**提示工程(Prompt Engineering)**。但随着AI应用向复杂化、长期化、自主化发展,一个新的概念——**Context Engineering(上下文工程)**正迅速成为焦点。

2025-07-15 19:45:12 418

原创 SmolLM3:小型、多语言、长上下文推理模型

SmolLM3 3B模型在性能上超越了Llama-3.2-3B和Qwen2.5-3B,同时与更大的4B替代方案(Qwen3和Gemma3)保持竞争力。除了性能数据之外,还分享了使用公共数据集和训练框架构建它的方法。

2025-07-15 19:44:18 267

原创 一句话就能让AI模型秒变专家,微调成本直降90%

高效的模型微调既困难又昂贵!如果有一个AI模型能够帮助你动态适配大语言模型会怎样?让我们来认识Text-to-LoRA——一个通过自然语言在单次前向传播中构建LoRA适配器的超网络。

2025-07-14 20:24:54 243

原创 【Agent专题】Agent架构设计:智能体架构设计的9大核心技术全景深解析,附架构图

2025年,AI智能体已经不再是概念模型,它们正在逐步落地为企业级工具、产品模块,**甚至成为工作流的“第二大脑”。

2025-07-14 19:57:28 659

原创 WWW 25|基于对比学习动态与图注意力网络的知识图谱补全

知识图谱通过图结构对实体及其关系进行建模,在语义检索、推荐系统、问答系统和智慧城市等领域有着广泛应用。典型的知识图谱通过事实三元组(头实体、关系、尾实体)来呈现现实世界数据,最终通过编码实体间复杂的关系,使计算机能够理解和推理知识。然而,尽管像Freebase和Yago这样的大规模知识图谱包含数十亿数据,但由于存在缺失的实体和关系,它们仍然存在数据不完整的问题。因此,知识图谱补全(KGC)受到了广泛关注,其目的是在给定关系和事实三元组中相应的尾实体或头实体的情况下,通过自主预测缺失的头实体或尾实体,来提高知

2025-07-14 19:56:10 895

原创 AI 智能体应用架构设计的12条核心原则解读

如上图所示,AI 智能体的核心在于其如何接收指令、执行任务并做出决策。以下是其关键组成部分:

2025-07-14 19:54:23 285

原创 LightRAG:让RAG飞入寻常百姓家,一文读懂轻量级检索增强生成的“武林秘籍”

你是否曾被RAG(检索增强生成)系统的复杂部署劝退?是否在面对多模态、知识图谱、长文档、批量导入导出等需求时,感到力不从心?今天,让我们一起揭开LightRAG的神秘面纱,看看它如何用“轻、快、全”的姿态,重新定义RAG的落地体验!

2025-07-13 10:45:00 986

原创 RAG+大模型怎么玩?这8个项目2025年最火!

想象一下,你能打造一个AI驱动的系统,秒速搜索海量数据,像人类一样理解语境,还能对复杂问题给出精准又聪明的回答。听起来像魔法?

2025-07-12 19:41:53 954

原创 一文看懂上下文工程(Context Engineering)

这个词似乎突然爆火,但这个概念并不是新的概念,而是从大语言模型诞生并进入应用层之后一直存在。只不过随着AI能力的发展和实际应用需求的提升,它终于被重新放上了聚光灯下,Andrej Karpathy[1]6月25日的推文助推下,更多人关注了

2025-07-12 19:35:27 1014

原创 NVIDIA提出小型LLM才是未来,并将重塑Agentic AI

人工智能代理(Agentic AI)正以惊人速度渗透企业场景:超50%大型IT企业已部署AI代理,行业估值在2024年达52亿美元,预计2034年将突破2000亿美元。然而,当前代理系统严重依赖**大型语言模型(LLM)**,如GPT-4、Claude等,通过集中式云API调用实现智能决策。这种模式引发两大痛点:

2025-07-11 22:11:14 406

原创 MemOS:一种用于 AI 应用的记忆操作系统

大型语言模型(LLM)已成为通用人工智能(AGI)的重要基础设施,然而其缺乏明确定义的记忆管理系统,阻碍了长上下文推理、持续个性化和知识一致性的发展。现有模型主要依赖静态参数和短暂的上下文状态,限制了它们在长期跟踪用户偏好或更新知识的能力。

2025-07-11 22:10:23 271

原创 RAG-MCP 新架构设计解决大模型提示词膨胀的工具选择问题

由于提示词的膨胀以及工具选择变得复杂,大语言模型(LLMs)很难高效地使用越来越多的外部工具,特别是那些由模型上下文协议(MCP)定义的工具。为此,需要新的架构来解决, RAG-MCP 框架正是解决这个提示词膨胀的问题。

2025-07-10 19:51:57 922

原创 【Agent专题】上下文工程:Context Engineering爆火!唤醒大模型“心智”,AI智能体落地的关键武器来了

随着大语言模型(LLM)能力的不断跃升,AI 智能体正在从纯对话系统迈向更复杂的多轮推理、多工具协同与长期任务执行。

2025-07-10 19:50:54 727

原创 Context Engineering(上下文工程)—做好大模型Agent的武功秘籍

最近Context Engineering(上下文工程),这个概念火遍技术圈,感觉过不了几日,招聘网站上很有点可能出现这个工种,就像去年爆火的Prompt Engineer一样。Context Engineering和Prompt Engineering的目的都是让激发出LLm的能力,不过对比二者:

2025-07-10 19:49:30 806

原创 RL+Agents+LLM 强强强组合!从「被动执行」到「自主进化」,AI决策迎来跃迁!

近年来,**Agent 与 LLM 结合强化学习(RL)** 的研究为人工智能领域带来了全新可能。通过引入“试错-反馈”机制,LLM不仅能理解语言,还能在复杂环境中自主优化策略,如在随机地图中导航或在推箱子游戏中进行多步规划。然而,奖励稀疏、环境不确定性及训练过程中的梯度不稳定等问题仍制约其发展。

2025-07-09 20:20:23 867

原创 使用 LangChain、LangGraph 和 RAGAS 构建复杂的 RAG 系统

想打造一个生产就绪的 RAG(Retrieval-Augmented Generation)系统?那可不是件简单的事儿!得一步步来,精心设计,反复迭代。咱们得先把数据收拾干净,然后试试不同的分块策略——逻辑分块和传统分块都得试试,找到最适合你的场景。接着,还要匿名化数据,减少那些模型“胡思乱想”的情况(也就是所谓的 hallucination)。为了让检索更精准,可以用子图(subgraphs)来聚焦最相关的信息,过滤掉那些没用的“噪音”。在检索层之上,还得加个计划和执行系统,靠 LLM(大语言模型)驱动,

2025-07-09 20:19:19 1022

原创 AI 智能体记忆架构在 LangGraph 中的落地实现

记忆是一个系统,用于记录之前交互的信息。对于 AI 智能体(AI Agent)来说,记忆非常重要,因为它能让 AI 智能体记住之前的交互,从反馈中学习,并适应用户的偏好。当 AI 智能体处理更复杂的任务和大量用户交互时,这种能力对于提高效率和用户满意度变得至关重要。

2025-07-09 20:15:49 852

原创 技术动态 | RAKG:文档级检索增强知识图谱构建 - 上海人工智能实验室等

随着基于知识图谱的检索增强生成(RAG)技术如GraphRAG和Pike-RAG的兴起,知识图谱在提升大型语言模型(LLMs)推理能力方面的作用日益凸显。然而,传统的知识图谱构建(KGC)方法面临复杂实体消歧、严格模式定义和跨文档知识整合不足等挑战。本文聚焦于自动文档级知识图谱构建任务。提出了一种文档级检索增强知识图谱构建(RAKG)框架。RAKG从文本块中提取预实体,并利用这些预实体作为RAG的查询,有效解决了LLMs中的长上下文遗忘问题,并降低了共指消解的复杂性。与传统的KGC方法相比,RAKG更有效地

2025-07-08 20:12:58 852

原创 一文搞懂上下文工程(Context Engineering):从“什么都不知道“到“无所不知“

想象这样一个场景:你正在用ChatGPT帮助分析一份50页的市场调研报告。开始时,AI的回答精准到位,但随着对话深入,你发现它开始"健忘"——忘记了报告中的关键数据,甚至开始给出与前面矛盾的建议。这不是AI模型本身的问题,而是遇到了上下文管理的挑战。

2025-07-08 20:08:30 870

原创 LLM中On-Policy与Off-Policy的本质区别是什么?

On-Policy**,顾名思义,指的是“用正在学习的策略产生的数据来学习”。即,智能体(在LLM中指语言模型本身)严格使用其当前策略(Policy)与环境交互所产生的数据来更新和优化自身。这意味着,一旦策略发生更新,所有旧的交互数据都将被废弃,因为它们是由一个“过时”的策略产生的。

2025-07-06 10:45:00 768

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除