- 博客(1322)
- 收藏
- 关注
原创 知识问答的终极形态:突破传统RAG的局限
传统RAG(检索增强生成)技术利用向量知识库,基于大模型的语义理解能力,通过对问题的拆解和向量搜索从知识库筛选内容。但该方法存在明显瓶颈:
2025-06-04 20:29:20
367
原创 从传统 RAG 到知识图谱 + Agent,知识库 AI 问答成功率终于达到 95% 了,来自蚂蚁集团的经验
由于一直关注 RAG 技术的发展,在我印象中有公开分享过 RAG 技术和经验,且达到很高准确率的案例,只有 Linkedin 分享的基于 Knowledge Graph 的召回率达到 85%+,后来就有了 Microsoft 公开的火爆一时的 GraphRAG 方案。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。到此为止,大概2个月的时间。
2025-06-04 20:27:24
393
原创 ICLR-25:多模态对比学习的“三原色“理论
与以往通过跨模态约束对齐不同模态特征的方法不同,CoMM旨在将多种模态的数据融合到一个共享的表示空间中,使不同模态能够在这个统一空间里进行交互,更贴近人类多感官信息整合的方式。
2025-06-03 21:08:37
461
原创 R1时代,RAG-Retrieval技术总结与展望~
RAG-Retrieval提供了全链路的 RAG 检索模型的微调(train)和推理(infer)以及蒸馏(distill)代码,也支持了多种loss,多个检索模型,一些先进的方法和trick。
2025-06-03 21:06:58
385
原创 人工智能:AI大模型构建保险Agent全景应用
引入保险产品对比 Agent 后,当用户提出对比需求,如 “我想了解重疾险 A 和重疾险 B 的区别”,Agent 立即通过自然语言理解模块解析用户需求,从保险产品数据库中精准提取两款产品的详细信息,包括保障疾病种类、赔付比例、等待期、保费计算方式等关键要素,运用数据对比和可视化模块,迅速生成一份清晰的对比表格,并以图文并茂的形式展示在销售终端设备上,整个过程仅需几秒钟。而且,传统方法应变能力差,一旦出现新的影像版式,就难以适应,不得不重新开启复杂的训练流程,严重拖慢了后续业务的处理进度。
2025-06-03 21:05:08
290
原创 单卡4090上一键GRPO微调Qwen3最新模型完整训练结果
- 基础模型:* https://modelscope.cn/models/Qwen/Qwen3-4B-Base- 数据集: 格式微调:* https://huggingface.co/datasets/unsloth/OpenMathReasoning-mini 推理GRPO训练:* https://huggingface.co/datasets/open-r1/DAPO-Math-17k-Processed
2025-06-02 10:45:00
884
原创 Agent综述论文火了,10大技术路径一文看尽
近日,来自美国康奈尔大学等高校研究团队的一篇智能体研究综述论文爆火出圈,相关推文在社交媒体平台X上收获超70万阅读量,过万收藏。这篇长达32页的综述,深度分析了Agent(智能体)研究中最容易混淆的一组核心概念——**AI Agents和Agentic AI**,并讨论了智能体技术发展过程中几大堵点问题的技术解决思路。
2025-06-01 10:45:00
548
原创 RAG技术全解析:从基础原理到优化实战
你了解RAG吗?,下面这些问题你是否能回答上来呢?- 什么是 RAG(RAG 的流程是什么),为什么需要 RAG?- 如何对文档分块(Chunking)?分块大小如何选择?
2025-05-31 10:45:00
674
原创 聊聊在大模型推理强化学习中熵机制上的探索
在RL训练LLM的过程中,普遍存在模型entropy迅速下降/性能迅速饱和的现象。这导致模型过度自信,进而削弱其探索能力,最终限制了性能的进一步提升。
2025-05-30 20:17:24
699
原创 一文搞懂基于大模型快速搭建本地RAG知识库应用实践
学习AI大语言模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。大语言模型本身存在一些局限性,而RAG就像那种上学时的“开卷小天才”——会查资料,还会加工,能有效减少产生误导性信息的可能,它是AI大模型应用的创新方法,为AI的回答能力打开了新世界的大门,为企业搭建知识库提供了全新的解决方案(即通过结合信息检索、增强和文本生成能力,有效提升大模型在知识密集型任务的准确性、可靠性、可解释性,以及大幅减少大模型的幻觉)。
2025-05-29 19:37:28
762
原创 赢得企业RAG挑战赛的秘诀 —— 冠军方案剖析与感悟
前不久看到一篇技术博客,是名为 **Ilya Rice** 的工程师所著(OS:想念另一位Ilya大佬的第N天),文中记录了作者在一次**RAG挑战赛**中,尝试过的有效方法,及踩过的坑。
2025-05-29 18:55:50
658
原创 一键式训练端到端Agent,Qwen3+MCP工具集高效集成!
Deepseek-R1 的成功已经证明了纯 RL 路线的强大潜力,但现有 RL 框架对于工具配置和奖励设计要求较高的工程能力。RLFactory 的出现,正是为了解决这一痛点,让使用者专注于核心算法创新,而无需为繁琐的工程细节分心。
2025-05-29 18:53:33
590
原创 向量数据库和嵌入模型
Vector是向量或矢量的意思,向量是数学里的概念,而矢量是物理里的概念,但二者描述的是同一件事。向量的准确定义:向量是用于表示具有大小和方向的量。具体而言,向量可以在不同的维度空间中定义,最常见的是二维和三维空间中的向量,但理论上也可以有更高维的向量。例如,在二维平面上的一个向量可以写作(x,y),这里x和y分别表示该向量沿两个坐标轴方向上的分量;而在三维空间里,则会有一个额外的z坐标,即(x,y,z)。
2025-05-29 18:52:09
739
原创 腾讯健康AI医疗布局:做能落地的、有价值的AI应用
自2023年大模型技术初步切入医疗赛道,短短两年时间业内已有超百款医疗大模型相继落地,从文本、影像到药物研发,全方位覆盖诊疗、科研等医疗相关活动的方方面面。
2025-05-28 19:22:54
840
原创 Apache Doris × AI 的5个应用场景(附完整案例)
你是否也有过这样的经历:一边是堆积如山的企业数据,一边是炙手可热的AI大模型,两者之间却像是隔了一条鸿沟,难以搭建起高效的桥梁。 >> 数据分析师忙得焦头烂额,业务人员对数据 x AI洞察的渴望却始终难以满足...不过,随着`Apache Doris与AI技术的深度融合`,这一困境正在被彻底打破。
2025-05-28 19:00:26
978
原创 大模型入门指南 - MoE:小白也能看懂的“模型架构”全解析
MoE通过“分而治之”的思想,为大模型突破参数规模与计算效率的瓶颈提供了新方向。随着国产模型DeepSeekMoE、Qwen-2.5 Max、国际标杆GPT-4的实践验证,MoE已成为下一代大模型的核心架构。
2025-05-28 18:59:03
618
原创 2025年,大模型LLM还有哪些可研究的方向?
近两年LLM在学术界与工业界的发展大家都有目共睹。到了今年,以预训练LLM为代表的大模型PK上半场已然结束,接下来就要进入下半场大模型2.0时代了。
2025-05-28 18:56:41
1044
原创 保姆级教程:零代码基础也能微调Qwen3,并本地部署
我将在本文介绍如何通过 unsloth 框架以 LoRA 的方法微调 Qwen3-14B 模型。
2025-05-27 21:46:19
1006
原创 详细介绍!RAG 和 GraphRAG:了解何时(When)、如何(How)使用它们
检索增强生成(RAG)主要目的是为了大模型引入外部知识,减少大模型幻觉,是目前大模型应用开发中必不可少的技术之一。但是传统RAG主要是通过语义相似度在向量空间中进行检索,无法捕获数据库中数据点之间的依赖关系。
2025-05-27 21:11:34
691
原创 DistilQwen2.5-R1发布:知识蒸馏助推小模型深度思考
随着 DeepSeek-R1 和 QwQ-32B 等面向深度推理的大语言模型的开源,“大模型+慢思考”已成为拓展大语言模型智能边界的标准配置。然而,这些模型在资源受限的移动设备和边缘计算场景中的普及仍面临巨大挑战。因此,学术界和工业界迫切需要解决如何有效利用知识蒸馏技术,将这些超大规模深度推理模型的知识迁移到小模型中,从而提升计算效率并降低部署成本的问题。为此,我们在 [DistilQwen2.5 系列蒸馏小模型]的基础上,推出了更为强大的 DistilQwen2.5-R1 系列深度推理模型。
2025-05-27 21:08:39
900
原创 AI 医疗,大模型厂商的下一个必争之地
在科技飞速发展的浪潮中,人工智能已经渗透到各个领域,而医疗行业作为关系到人类生命健康的至关重要领域,正逐渐成为大模型厂商激烈角逐的新战场。
2025-05-26 19:21:18
814
原创 Ollama-OCR:基于Ollama多模态大模型的端到端文档解析和处理
Ollama-OCR是一个Python的OCR解析库,结合了Ollama的模型能力,可以直接处理 PDF 文件无需额外转换,轻松从扫描版或原生PDF文档中提取文本和数据。根据使用的视觉模型和自定义提示词,Ollama-OCR可支持多种语言,并且能把文档转换为特定的格式进行输出。
2025-05-26 19:20:10
1084
原创 智能体大爆发,2025全面拥抱AI Agent
2025 年,注定是 Agent 从技术概念走向商业主流的转折点。无论是企业还是个人,若想在这场智能化浪潮中不被淘汰,拥抱 Agent 已不再是选择题,而是生存题。
2025-05-26 18:48:49
598
原创 Qwen3来了,用ollama纯CPU跑个Qwen3-14B会要注意什么?试问:如何证明你不是缸中之脑?
上一波DeepSeek带火了本地部署它的各种小尺寸蒸馏版本,特别是纯cpu也可以跑14B以下的大模型。当然这种玩票一般没有什么实际使用价值。
2025-05-25 10:45:00
821
原创 FlowReasoner:自动化查询级 Multi-Agent 系统(万字长文)
AI 实在是发展迅速,从智能对话到自动编程,从数学推理到机器人协同,LLM 展现出改变世界的强大力量。而基于 LLM 的多智能体系统,凭借其出色的规划、推理和协作能力,已然成为推动技术进步的关键力量。
2025-05-24 10:10:50
1002
原创 时序论文45| ExoLLM:大语言模型增强外部变量的时序预测模型
传统时间序列预测方法通常只关注目标变量(内生变量),而忽略外部环境中的变量(外生变量),导致预测精度受限。为此,本文提出了**ExoLLM**,利用大语言模型(LLM)来捕获外生变量的影响。作者设计了一种语言驱动的方法,通过元任务指令(MTI)激活 LLM 的预测能力,并通过多粒度提示(MGP)提取层次化的外生知识。并通过双模态注意力对齐机制(DT²A)弥合文本和时间序列之间的模态差距。在 12 个真实世界数据集上的实验表明,ExoLLM 显著优于现有方法,在长短期预测、少样本学习和零样本跨域迁移等场景中均
2025-05-24 10:09:26
1007
原创 大模型NL2SQL技术在商业银行的应用研究
随着人工智能技术的快速发展,各行各业不断推进数字化转型和智能化发展。2025年全国两会《政府工作报告》指出要“激发数字经济创新活力,持续推进‘人工智能+’行动,将数字技术与制造优势、市场优势更好结合起来,支持大模型广泛应用”,“加快完善数据基础制度,深化数据资源开发利用”。本文探索将大模型与大数据技术相融合,面向商业银行数字金融场景,应用大模型NL2SQL技术,在数据灵活提取、辅助数据分析、面向人工智能的数据准备、辅助应用开发等方面实现降本提质增效,促进金融领域大模型与大数据融合发展。
2025-05-24 09:38:19
907
原创 用MCP+Agent突破大模型最大token限制,完成超长网页翻译
今天我们完成一个实用的功能,**突破大模型的最大token限制,完成超长网页的翻译和输出
2025-05-24 09:37:16
587
原创 智能AI预问诊系统产品设计解析
结合观海上一篇关于智能AI电子病历系统的内容,这次就“智能AI预问诊+智能AI电子病历”两个内容是可以互为补充,如:患者可在线上挂号后追加预问诊,或线下到达各科室的候诊区后扫码进行预问诊,提前描述自己的病情信息,发送给医生。
2025-05-23 21:36:32
574
原创 5大企业级智能体的刚需落地应用场景
做智能体最难的事情,并不是如何怎么学会做智能体,工具的学习往往是简单的,如何找到智能体真正有用的应用场景和业务需求才是核心能力。我们目前在各大智能体开发平台上的智能体,说实话,更多是玩具的属性。
2025-05-23 21:34:02
912
原创 AI智能体与智能体AI(AI Agents vs. Agentic AI):概念分类、应用及挑战
在广泛采用AI智能体和具有智能体能力的AI之前,自主智能智能体的发展深深扎根于人工智能的基础范式,特别是多主体系统(MAS)和专家系统,强调社会行动和分布式智能。
2025-05-23 21:32:13
1100
原创 Lilian Weng 最新万字长文:从 CoT 到 Aha Moment,揭秘大模型「思考」的奥秘!
最近,北大校友、前 OpenAI 应用 AI 研究负责人 Lilian Weng 更新了一篇长长长长长长长博客《Why We Think》。
2025-05-22 10:45:00
1012
原创 Dify+本地DeepSeek实现文件上传功能
如果要在聊天窗口增加文件上传功能,需要用到Chatflow或者工作流,我下面以Chatflow为例,配置一个带文件上传功能的聊天窗口,我用的Dify版本是1.1.3。
2025-05-22 10:45:00
589
原创 企业级RAG实施指南,企业知识库落地一定不要错过,长文建议收藏
- RAG系统配置最佳实践与企业选型指南,企业知识库落地避坑宝典- 企业级RAG系统配置与框架选型:从需求到实施- RAG框架在企业中的深度应用与选型策略
2025-05-21 10:45:00
776
原创 Qwen3-30B-A3B 本地部署以及全能力测试
本文将详细介绍 Qwen3-30B-A3B 模型在本地部署过程及其全面能力测试。通过 LM Studio 等工具,在个人设备上部署此模型,体验从数学推理、逻辑分析到创意写作、多语言翻译及代码生成的全方位 AI 能力,看下这款强大的大语言模型真正的能力如何。
2025-05-21 10:45:00
1755
原创 AI人工智能应用场景全景解析:从个人到企业的深度智能化革命
人工智能(AI)已从技术概念演变为驱动社会变革的核心引擎。无论是个人生活的便捷化、办公效率的指数级提升,还是企业管理和生产制造的颠覆性创新,AI技术正以前所未有的深度和广度重塑各行各业。本文将深入挖掘AI在不同细分场景中的具体应用,展现智能化革命的完整图景。
2025-05-21 10:45:00
1229
原创 案例:基于dify开发一个爬取新闻网页内容发送到邮箱的智能体小助手
本文将基于dify开发一个爬取36氪网站新闻的内容,并通过小南瓜开发平台的邮件推送功能将内容推送到指定的邮箱。
2025-05-20 10:29:03
1135
原创 一作解读!从idea视角,聊聊Qwen推出的新Scaling Law——Parallel Scaling
我们都知道,除了拓展数据量以外,现在有两条主流的 scaling 路线来增强拉大模型的计算量,增强大模型的能力:
2025-05-20 09:31:06
743
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人