引言
目前AI Agent特别火,但是新技术常常伴随着混乱的术语和炒作。**那么你知道AI Agent和Agentic AI之间的区别吗?**搞清楚两者之间的关系,不仅关乎学术的严谨,也关乎着下一代AI技术的的发展。本文将详细带你了解AI Agent和Agentic AI这两个概念。具体内容安排如下:
- Agent背景介绍
- 什么是AI Agent
- AI Agent面临的挑战
- 什么是Agentic AI
- Agentic AI应用与挑战
- 总结
背景介绍
2022年11月,ChatGPT的发布无疑是人工智能发展史上的一个“奇点”事件 。一夜之间,AI从遥不可及的科研概念,变成了人人都能上手的聊天工具。很快,我们就不再满足于让AI仅仅“聊天”,而是希望它能“干活”。
于是,「AI Agent(AI代理)」 的概念应运而生并火爆全球。我们开始尝试让大语言模型(LLM)连接各种工具(如搜索引擎、计算器、API接口),让它能像一个助理一样,自主地执行多步骤任务 。从自动回复邮件、规划旅行,到编写代码,AI Agent展现了惊人的潜力,各大科技公司也纷纷入局,试图打造属于自己的“超级助理”。
然而,本文作者敏锐地指出,当前我们热议AI Agent的时候,或许只是未来图景的冰山一角 。「真正的变革,在于从单个“智能”走向多个“智能”的协同与涌现」。为此,作者明确提出了一个关键问题:我们是否混淆了两个本质不同但又比较容易混淆的概念——“AI Agent”和“Agentic AI”?搞清楚两者之间的关系,不仅关乎学术的严谨,更直接影响到我们如何设计、评估和下一代AI系统的发展。论文:https://arxiv.org/pdf/2505.10468
AI Agent
在AI Agent出现之前,主流的AI,如GPT系列、ChatGLM系列,我们称之为**「生成式AI(Generative AI)」** 。它的核心能力是根据提示(Prompt)生成内容,无论是文字、图片还是代码,当时记得还了出现了大模型提示词工程师的岗位。但它有一个本质的局限:被动性。它无法主动发起任务,无法与外部世界真实交互,更没有一个持续的目标去跟进 。相当于你踹他一脚,他就动一下,不踹他就不动。(哎?这话听着有点熟悉~~)
「AI Agent」 的诞生,「标志着AI迈出了从“被动生成”到“主动执行”的第一步」。它的核心架构,是在大语言模型这个“大脑”的基础上,增加了感知、推理和行动的能力,形成了一个“感知-思考-行动”的闭环 。更重要的是,它被赋予了使用**「工具」**的能力 。当一个任务超出了它的内部知识范围(比如查询今天的天气),它能够自主地调用外部API或搜索引擎,获取信息,然后整合进自己的决策流程中 。
它其实就像一个能力出众的独立顾问,你给他一个明确的目标(比如“帮我预订下周去上海的机票和酒店”),他就能自主地调用工具(查询航班、对比价格、预订网站API)来完成任务。本文作者将AI Agent的核心特征总结为三点 :
- 「自主性 (Autonomy)」 :一旦设定好目标,它可以在无需人类持续干预的情况下独立运作 。
- 「任务特定性 (Task-Specificity)」 :它通常被设计用来完成一个相对狭窄、明确的任务,例如邮件分类、客户支持或日程安排。
- 「反应性与适应性 (Reactivity and Adaptation)」 :它能对环境的实时变化(如用户的新请求)做出反应。
AI Agent面临挑战
当前AI Agent技术虽在任务自动化、语言理解等方面取得显著进步,但仍存在诸多关键局限性,限制了其在复杂实际场景中的应用。
首先,这类Agent**「普遍缺乏因果推理能力」**,难以处理涉及时间演变或变量关系的问题,导致在面对动态环境时表现不稳定。
其次,由于其核心依赖大语言模型(LLM),AI Agent**「不可避免地继承了幻觉、推理深度不足、知识更新困难等通病」**,且对提示设计高度敏感,影响了任务一致性与可控性。
此外,现有AI Agent普遍缺乏自主性、主动性和多智能体协作能力,无法胜任多阶段、长期性任务,容易在复杂任务中出现路径中断或错误累积。
与此同时,Agent系统缺乏完善的可解释性机制,难以对外部用户清晰解释推理路径,增加了在安全关键领域应用的风险。
最后,安全性问题突出,易受恶意输入、工具篡改等攻击,同时在处理新环境或非预期输入时表现脆弱,稳定性和鲁棒性有待提升。
以上问题共同表明,AI Agent不能满足对复杂决策、自主协作和高安全性的系统级应用需求。做过AI Agent的应该都知道,它的架构基本上就是一个大模型+一堆的工具接口。简单对比一下,这些AI Agent就像一个个勤奋的“牛马”,在各自的岗位上表现出色,极大地提升了自动化效率。然而,当面对需要多领域协作、复杂任务时,单个“牛马”就显得力不从心了(老板,臣妾做不到呀~~!)。这正是**「Agentic AI」**的绝对领域。
Agentic AI
Agentic AI则代表着一种根本性的**「架构革命」和「智能组织形式」的飞跃。作者清晰地界定了AI Agent与Agentic AI的本质区别,并构建了一个完整的分类学体系。并通过“智能家居”的例子生动说明了两者之间的区别。如下图所示:「AI Agent就像一个智能恒温器」** 。你可以设定一个温度,它会自主控制空调维持21度这个温度 。它甚至根据你的作息,自动控制实现节能的目的。但它的世界里,只有“温度”这一个任务,它孤立地运行,不会关心天气预报、电价波动或是你的日程表 。
「Agentic AI则是一个全屋智能生态系统」 。在这个系统里,有多个“各司其职”的AI Agent:一个“天气预报”Agent,一个“日程管理”Agent,一个“能源优化”Agent,还有一个“安防”Agent 20。它们不再是孤立的,而是通过一个**「“总指挥”(Orchestrator)」** 连接在一起,共享信息,从而实现家庭的极致舒适、安全与节能的目标。
例如,天气预报Agent预测到下午有热浪,会提前通知能源优化Agent,后者则决定在电价较低的中午,利用太阳能提前开启空调进行预降温 。同时,日程Agent发现家中无人,会通知安防Agent启动监控,并让能源Agent推迟高耗能的家务(如洗衣服)。
「这种从“个体智能”到“集体智能”的转变,是Agentic AI的灵魂」。它不再是简单地执行指令,而是能够理解一个模糊的、高层次的目标,并自主地将其分解、规划、分配给团队内的不同角色,并通过动态沟通和反馈来调整策略,最终完成任务。
Agentic AI应用与挑战
论文通过详实的案例,展示了Agentic AI巨大的应用潜力,这些应用场景的复杂度和价值都远超单个AI Agent。
「AI科研助理团队」:想象一下撰写一份复杂的科研基金申请书。一个Agentic AI系统可以组建一个“虚拟团队”:一个“文献检索员”Agent负责搜集最新研究,一个“数据分析师”Agent负责处理初步数据,一个“合规审查员”Agent负责核对申请指南,最后由一个“主笔”Agent将所有内容整合成流畅的文稿 。整个过程由一个“项目经理”Agent(Orchestrator)来协调,确保进度和质量。
「机器人协同作业」:在未来的智能农场里,Agentic AI可以指挥一支机器人大军进行协同采摘 。无人机Agent负责在高空绘制果园的“成熟度地图”,并将数据实时共享到一个中央内存中。采摘机器人Agent根据地图被分配到最高效的区域,而运输机器人Agent则在它们之间动态穿梭,运送果实。如果一个机器人出现故障,系统会自动重新分配任务,展现出惊人的鲁棒性。「协同医疗诊断」:论文甚至提到了现实世界中正在探索的“AI医院”概念。在重症监护室(ICU),一个“生命体征监控”Agent持续分析数据,一个“病史检索”Agent从电子病历中提取关键信息,一个“临床指南”Agent则根据最新医学证据提出治疗建议。这些信息被汇总给一个“主治医师”Agent,辅助人类医生做出更快速、更精准的决策。
**「然而,强大的能力也伴随着巨大的挑战。」**论文同样深刻地剖析了Agentic AI面临的困境,这些问题比单个AI Agent的局限(如幻觉、偏见)要复杂得多:
「1.错误的级联放大」:在一个协作系统中,一个Agent的微小错误或幻觉,可能会像瘟疫一样在整个系统中传播并被放大。例如,如果信息检索Agent提供了一个错误的事实,后续的分析和决策Agent都会基于这个错误信息进行工作,最终导致整个系统的结论完全错误 。
「2.协调与通信瓶颈」:如何让多个AI Agent高效、无歧义地沟通?目前它们大多依赖自然语言,这充满了模糊性。如何确保它们对同一个目标的理解完全一致?这都是巨大的技术难题。
「3.不可预测的涌现行为」:多个简单的个体互动,可能会产生复杂的、无法预料的集体行为,这被称为“涌现” 。这种涌现可能是创新的源泉,但也可能导致整个系统失控,做出有害或违背设计初衷的行为 。
「4.责任归属的困境」:如果一个由多个Agent组成的系统犯了错,责任该由谁承担?是最初下达指令的用户,还是某一个犯错的Agent,或是负责统筹的“总指挥”Agent?这种问责制的模糊,是其在金融、医疗等高风险领域应用的最大障碍之一 。
总结
本文详细介绍了AI Agent 和Agentic AI这两个重要概念,它告诉我们,通「往更强大人工智能的道路,需要我们构建更先进的协同机制、更可靠的共享记忆架构、更强大的因果推理能力以及更完善的治理和安全框架」。
从“AI Agent”到“Agentic AI”,我们正在见证AI从一个“工具”到一个“合作伙伴”,再到一个“高效组织”的演进。这不再是关于单个AI能做什么,而是关于一个AI“军团”能协同完成什么。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。