基于RAG架构的数字人智能客服应用实践

数字金融作为2023年中央金融工作会议提出的“五篇大文章”之一,其目标在于促进金融机构运用数字技术提升重点领域金融服务质效、提高“数实融合”水平,以及建设数字金融服务生态,以推动我国金融领域的高质量发展。基于此背景,交银金融科技有限公司(以下简称“交银金科”)聚焦智慧交易链平台的“蕴通易信”场景,融合多种人工智能技术,积极探索基于检索增强生成(RAG)架构的数字人智能客服应用。实践表明,基于RAG架构的数字人智能客服凭借全天候在线、准确高效、个性化服务及低成本运营等特性,不仅显著提升了用户满意度与忠诚度,还有效降低了企业的运营成本、助力企业实施精准营销策略,为提升企业市场竞争力提供了有力支撑。

一、数字人智能客服与RAG概述

在技术革新的浪潮中,数字人智能客服——一种模拟人类行为和交互模式的AI模型应运而生。它凭借深度学习、大数据分析技术以及拟人化的形象与交互设计,能精准模拟人类反应和情感,提供人性化服务体验。相较于传统人工客服,数字人智能客服不仅可提供7×24小时的服务,快速响应用户需求,还能降低企业运营成本,减轻人力依赖,简化系统管理流程。更重要的是,它能通过数据分析提供个性化服务,提升用户体验与忠诚度,助力企业科学决策与精准营销,从而提升运营效率与收益。

当前,金融机构构建的数字人智能客服普遍具有功能强大且多样化的优势,但是,这些集成了智能问答、图像识别、情感计算及多轮对话能力的数字人仍需要构建高效灵活的大模型架构以应对复杂应用场景的挑战。对此,金融机构纷纷深入研究与实践多种架构策略,如路由分发实现高效任务分配、大模型代理拆解复杂任务、缓存微调提升效率、目标导向Agent智能执行、Agent智能体组合协作、双重安全架构保障内容安全等。其中,RAG以其融合检索与生成能力的独特优势,在智能客服领域展现出非凡潜力。一些金融机构致力于将RAG架构融入智能客服系统,通过结合检索知识库与生成自然语言回答,以期提升系统回答精准度与用户满意度,为智能客服系统的发展及AI技术在金融领域的应用开辟新的路径。

二、基于RAG架构的

数字人智能客服模型及其技术应用

智慧交易链平台是交银金科建设的产业链金融信息技术综合服务平台,提供监管部门规定的非商业银行经营范围的部分非金融服务,为核心企业及其链属的上游供应商提供产业链信息技术综合服务。平台主要是以“蕴通易信”应收账款数字债权凭证流转串联整个产业链条,高效连接产业端和金融端,致力于建立标准化、流转化、价值化的商业信用体系。自面市以来,该平台吸引了大量用户,随之也带来了大量的用户咨询。高效地处理这些用户咨询不仅能够解决用户的问题,提升产品的口碑,还可以进一步洞察用户问题背后的实质,寻找企业业务增长点。

通过大量的市场调研与前期准备工作,交银金科决定应用RAG架构提升“蕴通易信”场景数字人智能客服效果,构建了基于RAG架构的数字人智能客服模型(如图1所示)。该模型由两大核心组件构成:一是高效的文档检索模块(图1中绿色部分,包括“文档”“知识库”等),负责从庞大的“蕴通易信”产品知识储备库中精确筛选与用户查询紧密相关的文档子集;二是基于检索结果的智能生成模块(图1中蓝色部分,包括“向量化知识”“答案”等),其功能是整合用户原始查询与检索信息,通过复杂的语言生成机制,输出精确度高且上下文连贯的应答内容。

img

图1 基于RAG架构的数字人智能客服模型架构

具体运作流程为:首先,文档检索模块快速且精准地执行信息检索任务,筛选出与用户问题最为契合的文档集合;随后,这些精选文档被输入智能生成模块,该模块进一步解析并融合这些信息,最终生成既符合用户需求又与上下文高度一致的回答。此模型巧妙地融合了检索与生成技术的优势,显著提升了知识问答系统的效率与准确性。

以RAG架构作为驱动,大语言模型能够更好地发挥数字人智能客服的作用,凭借其强大的自然语言处理能力,包括文本生成、语义理解和上下文推理能力,为用户提供高质量的交互体验。此外,基于RAG架构的大语言模型还能够借助多种提示词方法进行优化,使提示词设计更加结构化和具体化,从而更好地生成正确的回答。

在技术实现层面,FastGPT、LangChain等开发框架可为系统集成提供有力支持。考虑到FastGPT具备支持多种大语言模型部署与集成的能力,其高效的模型推理和加速技术能够显著缩减用户等待模型响应的时长,交银金科数字人智能客服选用了FastGPT作为开发框架。此外,数字人智能客服采用了Milvus存储向量库,该向量库在应对大规模向量数据时,性能表现极为卓越。它能够在毫秒级时间内精准返回搜索结果,特别契合实时问答场景的严苛需求。

三、基于RAG架构的

数字人智能客服应用成效

在交银金科“蕴通易信”场景实践中,基于RAG架构的数字人智能客服优势明显,其具备7×24小时的高准确率问答服务能力,同时在数据安全方面表现卓越(如图2所示)。用户仅需通过页面访问的形式,就能与这款集智能问答、语音交互及多轮对话等技能于一身的数字人进行互动,享受既生动直观又个性鲜明的智能金融服务,体验真实、自然的对话氛围。当用户提出某一问题时,基于RAG架构的系统会迅速响应。首先,系统会对问题进行语义解析,并将其转化为向量形式,在Milvus向量库中进行相关知识片段的检索。随后,FastGPT框架会调用大语言模型,对检索到的知识片段进行整合与推理,从而生成专业、准确的回答。最终,答案会及时以文本和语音的形式反馈给用户,整个过程高效流畅。

img

图2 “蕴通易信”场景数字人智能客服能力及其与用户交互示例

交银金科针对基于RAG架构的数字人智能客服系统实施了一系列全面而严谨的专业度评估测试,结果显示,在禁用上下文参考因素的条件下,该数字人智能客服回答准确率稳定保持在85%以上。值得一提的是,在常规的大型语言模型应用场景中,用户往往需要经过至少两次或更多次的连续询问,才能获得令其满意的答复。这一现象揭示了模型回答准确率与用户所提供上下文信息量之间的正相关关系,即随着用户输入上下文信息的增加,模型的回答精准度亦随之提升。鉴于此,在真实应用场景中,用户所体验到的该数字人智能客服的回答准确率,预期将超越前述的85%基准,彰显了其在提升用户满意度与交互效率方面的潜力。

综上所述,基于RAG架构的数字人智能客服能够以更低的成本实现更高效的服务,从而大幅度提升用户满意度。展望未来,随着技术的不断演进与应用的日益广泛,基于RAG架构的数字人智能客服有望助力开启金融服务新篇章,为企业和社会创造更大的价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值