基于图的 RAG 统一框架 in-depth 分析
核心速览
研究背景
研究问题:
这篇文章要解决的问题是如何在统一框架下对基于图的检索增强生成 (RAG) 方法进行系统的比较和分析。现有的基于图的 RAG 方法没有在同一实验设置下进行系统的比较。
研究难点:
包括缺乏统一的框架来抽象和比较各种基于图的 RAG 方法;现有工作主要关注整体性能评估而非单个组件的性能;以及缺乏对各种方法在准确性和效率方面的全面比较。
相关工作:
涉及 RAG 技术在医疗、金融、教育等领域的广泛应用,以及已有的基于图的 RAG 方法(如 RAPTOR、KGP、HippoRAG 等),但这些方法缺乏系统比较和分析。
研究方法
- 图构建:
将大规模语料库分割成多个块,并使用 LLM 或其他工具从中提取节点和边构建图(如 passage graph、tree、knowledge graph、textual knowledge graph 和 rich knowledge graph)。 - 索引构建:
为高效在线查询,构建存储图中实体或关系的索引,并计算社区报告实现高效检索。索引类型包括节点索引、关系索引和社区索引。 - 操作符配置:
在统一框架下,任何现有的基于图的 RAG 方法均可通过选择特定操作符(节点、关系、块、子图、社区)并组合实现。 - 检索与生成:
将用户输入的问题转换为检索原语,利用选定操作符检索信息,再与问题一起输入 LLM 生成答案。答案生成包括直接生成和 Map-Reduce 两种范式。
实验设计
- 数据集:
使用了 11 个真实世界数据集,如 MultihopQA、Quality、PopQA、MusiqueQA、HotpotQA、ALCE、Mix、MultihopSum、Agriculture、CS 和 Legal。 - 评估指标:
对特定问题任务采用准确率和召回率;对抽象问题任务采用全面性、多样性、赋能和总体质量等指标。 - 实现:
所有算法均在 Python 中实现,并使用提出的统一框架,实验覆盖 350 集数据集。 - 超参数设置:
对于需要 top-k 选择的方法(如块或实体),设置 ( k=4 ) 以适应令牌长度限制,并采用 BGE-M3 模型生成节点和关系的嵌入向量。
结果与分析
- 特定问题任务的性能:
RAG 技术显著提高了 LLM 的性能。比如,在 Quality 数据集上,RAPTOR 相较于 ZeroShot 提高了 53.80% 的准确性,但若检索到的元素不相关则可能降低性能。
- 图构建和索引构建的成本:
构建树的令牌成本最低,而 TKG 和 RKG 的成本最高。对于大型数据集,GraphRAG 的离线阶段成本较高。
- 生成成本:
ZeroShot 和 Vanilla RAG 在时间和令牌消耗方面较为经济,而 KGP 和 ToG 由于依赖 LLM 检索信息成本较高。
- 复杂问题任务的新 SOTA 算法:
提出了 VGraphRAG,通过结合实体、关系、社区和块四种元素有效指导 LLM 生成准确答案,在 ALCE 数据集上分别在 STRREC、STREM 和 STRHIT 上提高了 8.47%、13.18% 和 4.93%。
- 抽象问题任务的性能:
基于图的 RAG 方法通常优于 Vanilla RAG,GGraphRAG 和 RAPTOR 因在提示中加入高层次总结文本表现更佳。
- 新 SOTA 算法的成本效益:
设计了成本效益更高的 CheapRAG,通过选择最有用的社区和块显著减少令牌成本,在 MultihopSum 数据集上相比 GGraphRAG 降低了 100 倍令牌成本,同时提升了答案质量。
总体结论
本文对现有基于图的 RAG 方法进行了深入实验评估和比较,提出了一个新的统一框架覆盖所有现有方法,并识别出关键性能影响因素和未来研究机会。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。