RAG 是 “Retrieval-Augmented Generation” 的缩写,中文可以翻译为“检索增强生成”。它是一种结合了信息检索和自然语言生成的技术框架,名称的含义为:
- 检索:从知识库(数据库或内存)访问和检索信息。
- 增强:通过附加信息或上下文来增强或丰富文本生成过程。
- 生成:创造或生成文本的过程。
RAG可以使用从矢量数据库中检索到的信息来确保响应是基于现实世界的知识和背景,从而降低出现幻觉的可能性。还可以提升生成内容的可追溯性,使得模型的响应更加准确、可靠且与上下文有关。同时确保无需重复训练LLM,使得模型的响应更加实时。
RAG的工作流程
1.文本分块
将外部文档拆分成文本块,然后将文本块嵌入并存储在矢量数据库中。
文本分块的作用是避免检索效率下降、语义理解受限、计算资源浪费、生成质量下降、加剧语义歧义等,否则对于检索相关上下文没有任何实际作用。
2.生成嵌入
分块之后,使用嵌入模型来嵌入块,即计算向量的过程。
Transformer之前,使用的是词嵌入模型,计算效率高但语义理解能力有限;Transformer之后使用的是上下文嵌入模型,语义理解能力强但计算成本较高。
3.将嵌入存储到向量数据库中
将这些嵌入向量存储到向量数据库中,矢量数据库将原始内容与嵌入向量一起存储。这样,矢量数据库充当了RAG应用程序的内存,将所有附加的知识存储到矢量数据库中,通过这些知识,可以回答用户的问题。
4.用户输入查询
用户输入一个查询,即一个代表正在寻找的目标信息的字符串。
5.嵌入查询
使用外部知识构建文本块时使用的相同嵌入模型,将此查询转换为向量。
6.检索相似块
将向量化的查询与矢量数据库中现有的矢量进行比较,以找到最相似的信息。
矢量数据库使用近似最近邻搜索,返回前k个最相似的文本块,这个就是RAG中经常会用的top_k参数。
预计这些检索到的文档包含与查询相关的信息,为最终的响应生成提供基础。
7.文本块重排序
检索后,选中的文本块需要进一步细化,确保优先展示相关性最高的文本,这个过程叫重排序。这个步骤中,通常会用到Reranker模型(通常是交叉编码器)评估查询检索到的文本块的初始列表,计算每个文本块的相关性得分。
此过程重新排列文本块,以便优先使用相关性最高的块以进行响应。并非每个 RAG 应用程序都实现这一步骤,只是依赖于在步骤 6 中获得矢量数据库中检索相关上下文相似度分数。
8.生成最终响应
将用户的原始查询与提示模板中检索到的块相结合,以生成综合所选文档信息的响应。
LLM 利用块提供的上下文来生成连贯且上下文相关的答案,直接解决用户的查询。
RAG的局限性
1.问题在语义上与答案并不相似。
即检索到的文档可能与问题并不相关,可能不相关的文档会比包含答案的文档得到更高的余弦相似度。
一种解决方案是基于LLM生成一个假设答案,然后使用问题和假设答案的嵌入向量来查询矢量数据库。
- 语义相似性可能会被淡化
简单说,包含重要信息的长文本会比包含不重要信息的的短文本的相似性更低,导致搜索会返回不相关的文档。
解决方案:对文本进行分块。文本分块很重要,尽量使每个文本块只包含几个段落信息,确保每个文本的特征都能更加独特。
3.不能问需要汇总的问题
提出需要在整个数据库中聚合数据的问题,答案很可能是错误的。如果正确的信息只存在于一个或几个文档中,相似性搜索可能会找到它。但是,如果需要扫描所有文档才能找到答案,相似性搜索就无法找到答案。
- 重排序时文本块的顺序
基于相似性搜索从数据库中检索文档时,可能倾向于使用相似性度量对文档进行排序;然而,LLM 并不像我们一样感知顺序。我们可能会更多地考虑列表中的前几个文档,但它们往往会忽略中间的文档。
解决方案:只需要重新排序文档,将最相关的文档交替放在列表的顶部和底部,以确保最不相关的文档位于中间:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。