tensorflow2.0——预测泰坦尼克号旅客生存概率(Keras应用实践)

该博客详细介绍了如何利用TensorFlow 2.0和Keras进行机器学习,以预测泰坦尼克号乘客的生存概率。首先,通过数据准备,包括数据下载、预处理、特征选择和训练集测试集划分。接着,构建了模型结构,并进行了模型训练,训练过程中包含了数据的打乱和可视化。模型经过评估后,应用于新的数据,预测Jack & Rose等旅客的生存概率,并进行了预测结果的深入探索,发现模型预测中存在的一些情况,如Allison一家的案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据准备

1、导入相关的库

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import urllib.request
import os
%matplotlib inline

print("Tensorflow版本是:",tf.__version__)

2、下载泰坦尼克号上旅客的数据集

data_url="http://biostat.mc.vanderbilt.edu/wili/pub/Main/DataSets/titanic3.xls"

data_file_path="E:/titanic3.xls"
 
if  not os.path.isfile(data_file_path):
    result=urllib.request.urlretrieve(data_url,data_file_path)
    print('downloaded;',result)
else:
    print(data_file_path,'data file already eists.')

3、使用Pandas读取处理数据

import numpy
import pandas as pd
 
# 读取数据文件,结果为DataFrame格式
df_data = pd.read_excel(data_file_path)

4、筛选提取需要的特征字段

# 筛选提取字段
selected_cols=['survived','name','pclass','sex','age','sibsp','parch','fare','embarked']
selected_df_data=df_data[selected_cols]

5、定义数据预处理函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值