大规模 K8s 集群管理经验分享 · 上篇

本文分享了大规模K8s集群管理的经验,包括如何处理存储差异、集群规模与稳定性优化、K8s与Serverless的关系、两地三中心部署架构的考量,以及数据库在K8s上的部署策略等。通过标准化运维、建设诊断系统和优化参数来提升效率和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11 月 23 日,Erda 与 OSCHINA 社区联手发起了【高手问答第 271 期 – 聊聊大规模 K8s 集群管理】,目前问答活动已持续一周,由 Erda SRE 团队负责人骆冰利为大家解答,以下是本次活动的部分问题整理合集,其他问题也将于近期整理后发布,敬请期待!


Q1:K8s 上面部署不通的应用对于存储有不同的要求,有的要高吞吐,有的是要低响应。大规模 K8s 部署的时候是怎么协调这种存储差异的问题?还是说需要根据不同的场景,运维不同的存储服务?又或者说尽量存储使用解决方案?

A1:存储相对于 CPU 和内存确实会更复杂一些,就是因为它会包含更多类型,不同的存储空间,不同的性能要求。所以存储还是得从应用需求出发,来满足不同的存储需求。


Q2:请问下你们维护的最大 K8s 集群规模大小是多少?遇到了哪些性能、稳定性问题?做了哪些优化?

A2:我们目前维护的单个集群规模不大,总量相对大些,维护了几百个集群。量上来了就会碰到形形色色的问题,比如:如何提升运维效率?如何比用户更早地发现问题?如何优化内存碎片问题?如何优化磁盘驱逐带来的隐患?。我们也做了很多事情:第一步进行标准化,比如统一操作系统、统一版本、标准化节点规格、系统数据盘分离等等。接着开始建设诊断系统,覆盖操作系统、容器、K8s、常规中间件、平台(应用)等,目前就是先于用户发现问题,能全方位进行巡检覆盖,可以将其理解为运维系统的眼睛,近期我们刚好也开源了这个系统:kubeprober。当前也会有对应的一些优化,比如: 补充 docker k8s 的 log rotate 参数,优化 gc、eviction 参数,防止磁盘被写满;对 Pod PID 进行限制、EmtyDir 存储、容器可写层大小等进行限制;保障 K8s 关键 Pod 的调度;关闭 swap,优化 /proc/sys/vm/min_free_kbytes 等参数,优化内存回收。

问题有些大,涉及的工作也会特别多,我也只是列举了部分,每个点上都还可以做更多的事情。

kubeprober 开源地址:
https://github.com/erd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值