大模型应用开发 | 一文搞懂大模型的预训练Pre-training

当你向ChatGPT提问时,它总能给出令人满意的回答,仿佛拥有无穷无尽的知识。这种近乎魔法的能力是如何获得的?答案就隐藏在一个被称为"预训练"的神秘过程中。

想象一下,如果要教会一个孩子理解和运用语言,我们会让他大量阅读各种文本,从童话故事到百科全书,从新闻报道到诗歌散文。大模型的预训练过程与此类似,只不过规模要庞大得多。整个过程始于对互联网上海量文本数据的收集,这些数据涵盖了人类知识的方方面面——网页内容、电子书籍、学术论文、新闻文章、论坛讨论等等。

一、Pre-training:预测一个词

1、什么是预训练(Pre-training)?

预训练本质上是一种大规模的自监督学习过程。与传统神经网络需要人工标注数据不同,预训练巧妙地利用文本数据本身的内在结构作为监督信号。具体而言,它是通过预测文本中的下一个词来学习语言规律。也就是说,预训练把复杂的语言学习问题转化成了一个统计问题:在已知前面所有词的情况下,去推断下一个词最有可能是什么。从某种意义上讲,它本质上就是一个极为复杂的N-Gram模型。

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling  for... - Language Model - Butterfly Effect

2、为什么预训练(Pre-training)如此重要?

预训练的革命性意义在于解决了AI训练的根本难题。首先,它绕过了数据标注的瓶颈。互联网上有数万亿字的文本,但人工标注是不可能的。预训练让模型从文本的自然结构中自主学习,无需外部监督。

其次,预训练使模型获得了通用的语言表示能力。通过在海量多样化文本上训练,模型不仅学会了语法和词汇,还获得了常识知识、逻辑推理能力。更令人惊叹的是"涌现能力"现象——当模型规模达到临界点时,会自然展现出训练目标之外的智能行为,从简单的文本预测中涌现出数学推理、代码生成等高级能力。An illustration of next word prediction with state-of-the-art network  architectures like BERT, GPT, and XLNet | by Ajay Arunachalam | Medium

二、预训练过程

从海量文本到智能生成的完整转换流水线

首先从互联网收集并清洗海量文本数据,去除重复和低质量内容;然后通过分词化将文本转换为数字序列,每个词汇对应唯一的token ID;接着进入核心的神经网络训练阶段,模型通过不断预测文本中的下一个token来学习语言规律,其数十亿参数在这个过程中被优化调整,最终学会捕捉语言的统计模式和深层语义;训练完成后,模型在推理时采用自回归方式逐个生成token,每次预测都基于前面所有token的上下文信息,从而能够产生连贯、合理的文本输出——这个看似简单的"预测下一个词"任务,最终使模型获得了强大的语言理解和生成能力。

img

1、数据收集与预处理

预训练的第一步是收集海量文本数据。系统从互联网抓取网页内容、电子书籍、新闻文章、学术论文等各类文本。然而,原始数据质量参差不齐,充斥着重复内容和垃圾信息。

专门的数据处理管道会进行严格清洗:去除重复内容、过滤低质量文本、统一格式标准、移除隐私信息等。这个环节决定了模型能学到什么样的知识,是整个流程的关键基础。

img

2、分词化处理(Tokenization)

计算机无法直接理解文字,需要将文本转换为数字序列。分词化采用字节对编码(BPE)算法,通过迭代识别和合并最常见的字符或子词组合来构建词汇表。

举个例子:一段5000字符的文本,经过分词化后被转换为约1300个token,每个token对应词汇表中的唯一数字ID。这种编码方式既保证效率,又能处理各种语言和专业术语。

3、神经网络训练(neural network training)

这是预训练的核心阶段。模型接收长度可达数千token的文本序列,学习预测每个位置的下一个token。训练过程中,神经网络通过复杂的数学计算,包括注意力机制、层归一化等组件,将输入序列转换为高维语义表示。

网络输出是包含数万个概率值的向量,每个值对应词汇表中一个token的出现可能性。模型的数十亿参数在训练中根据预测准确性不断调整优化,逐渐学会捕捉语言的统计规律和深层语义。

4、推理生成(inference)

训练完成的模型展现出令人惊叹的生成能力。这是一个自回归过程:给定起始token,模型计算下一个最可能的token并添加到序列中,然后基于更新后的完整序列继续预测。

每一步预测都基于前面所有token的丰富上下文,使模型能生成语法正确、逻辑连贯的长篇文本。正是通过这种逐token的生成方式,大模型展现出了接近人类水平的语言运用能力。


三、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 关于 BERT 预训练模型的理解 BERT 的全称是 Bidirectional Encoder Representations from Transformers,它是一种基于 Transformer 架构的预训练语言表示模型。以下是对其五个核心关键词的具体解释: #### 1. **Pre-training** 预训练是指通过大量的无标注语料库来学习通用的语言特征[^1]。这种过程使得模型能够捕捉到丰富的上下文信息以及词之间的关系。 #### 2. **Deep** “Deep”指的是模型具有多层神经网络结构。具体来说,BERT 使用了多层双向 Transformer 编码器堆叠而成,从而增强了其表达能力[^2]。 #### 3. **Bidirectional** 传统的语言模型通常是单向的(如从左至右或者从右至左),而 BERT 则采用了双向机制,在训练过程中可以同时利用前后的上下文信息来进行预测。这显著提高了对词语含义理解的能力。 #### 4. **Transformer** Transformer 是一种新型的神经网络架构,最初由 Vaswani 等人在《Attention is All You Need》一文中提出。相比于 RNN 或 LSTM,Transformer 更加高效并行化计算能力强,特别适合大规模数据集上的任务[^3]。 #### 5. **Language Understanding** 最终目标是为了提升机器对于人类语言深层次的理解水平。经过充分预训练之后得到的 BERT 模型可以直接应用于各种下游 NLP 任务上,并取得优异表现。 如果想实际操作或研究该模型,则可以通过公开仓库获取其实现代码与权重文件。例如,在 GitHub 上有项目提供了 PyTorch 版本实现 `NLP-BERT--Python3.6-pytorch` 可供下载使用[^4]。 ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state) ``` 上述脚本展示了如何加载预训练好的 BERT 并对其进行简单测试运行的一个例子。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值