数字图像处理(5)- 图像恢复

本文介绍了图像在形成、传输过程中的退化现象以及图像恢复的概念,探讨了退化模型如连续、离散和频域模型,常见的退化函数和噪声模型。重点讲述了空间域和频率域的滤波复原技术,包括均值滤波器和顺序统计滤波器,以及逆滤波和维纳滤波在图像恢复中的应用。此外,还讨论了如何处理几何畸变图像的空间坐标变换和灰度值确定方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.1 图像恢复概述

1.2 退化模型

1.2.1 连续退化模型

1.2.2 离散退化模型

1.2.3 频域退化模型

1.3 常见退化函数模型及辨识方法

1.3.1 常见的退化函数模型

1.3.2 退化函数的辨识方法

1.4 噪声模型

1.4.1 常见噪声模型

1.4.2 加噪声后的图像及其直方图 

2 空间域滤波复原

2.1 均值滤波器

2.2 顺序统计滤波器

3 频率域滤波复原

3.1 带阻滤波器

3.2 带通滤波器

4 逆滤波和维纳滤波

4.1 逆滤波

4.2 维纳滤波器

5 几何畸变图像的恢复

5.1 空间坐标变换 

5.2 灰度值的确定


1.1 图像恢复概述

        图像在形成、记录、传输等过程中,由于受光学成像系统的相差、成像衍射、成像非线性、系统噪声等多种因素的影响,图像的质量都会有所下降,图像的这一降质过程称为图像的退化,此时的图像就称为退化图像。图像恢复,又叫图像复原,就是尽可能地减少或消除图像质量的下降,恢复被退化图像的本来面目。

  

常见图像退化形式:举两个例子。 

 

        与图像增强的区别:

1.2 退化模型

退化模型的性质: 

 

图像退化的数学模型: 

 

采用线性移不变系统模型的原因: 

 

 

1.2.1 连续退化模型

1.2.2 离散退化模型

用矩阵运算描述: 

 

 循环矩阵H的对角化,后面会再叙述。

1.2.3 频域退化模型

1.3 常见退化函数模型及辨识方法

1.3.1 常见的退化函数模型

  1. 线性运动退化函数
  2. 散焦退化函数
  3. 高斯退化函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值