
论文总结
文章平均质量分 88
概括论文内容
genggeng不会代码
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文创新点
在 CoRP(协同表示纯化) 框架中引入 跨尺度特征融合模块(CSFF) 可以显著提升其性能,尤其是在 复杂场景下的协同显著性检测 任务中。PCS 依赖特征相似性计算,但单尺度特征可能导致:误匹配(如相似纹理的背景被误判为协同显著)。漏检(小目标因特征分辨率低被忽略)。:融合 低层(高分辨率、细节丰富) 和 高层(语义强、感受野大) 特征,使模型能同时捕捉 局部细节 和 全局结构。:提供 更鲁棒的特征表示,减少噪声干扰。原创 2025-05-09 08:38:57 · 248 阅读 · 0 评论 -
2023 DMT(总结) 用于共显著性目标检测的判别性协同显著性和背景挖掘变压器
图1. 我们所提出的用于协同显著目标检测(CoSOD)的DMT模型的总体流程图。具体而言,该框架由四个部分组成,即用于生成分割特征的区域对区域相关性模块(R2R)、用于构建检测标记的图像内对比诱导的像素到标记相关性模块(CtP2T)和协同显著性标记对标记相关性模块(CoT2T),以及用于在标记引导下细化分割特征的标记引导特征细化模块(TGFR)。问题一:详细介绍一下这张图的流程是什么?R2R:负责从图像中提取显著性分割特征。CtP2T。原创 2025-05-07 20:15:21 · 934 阅读 · 0 评论 -
2024 (总结)通过多尺度的特征对应进行自监督 Co-Salient 目标检测 SCoSPARC
问题一:什么叫做交叉注意力图?交叉注意力图(Cross-attention Map)是一种通过计算图像组内不同局部块(patch)之间的特征相似性生成的矩阵,用于量化不同图像之间共现区域的关联强度。其核心思想是通过无监督方式捕捉多张图像中重复出现的显著区域(共现目标)。1. 基本定义输入:一组图像(例如3张包含共同目标的图像)。操作对象:每张图像被分割为多个小块(patch),每个块通过ViT(如DINO-ViT)提取视觉特征。输出。原创 2025-05-07 11:05:45 · 700 阅读 · 0 评论 -
CONDA:用于 Co-Salient 目标检测的压缩深度关联学习(总结)
我们的凝聚式深度关联(CONDA)模型的整体流程图。具体来说,凝聚式深度关联(CONDA)模型首先利用图像特征来计算超关联。然后,全像素超关联由对应诱导关联凝聚(CAC)模块进行凝聚,并输入到聚合网络中,以获得深度关联特征。这些特征随后在特征金字塔网络(FPN)解码器过程中用于最终的预测。为简洁起见,图中仅展示了三张相关图像。问题一:这张图的流程是什么?这张图展示的是 的完整工作流程,其核心是通过 的三阶段处理,实现多图像间的深度关联特征提取与预测。原创 2025-04-23 20:20:43 · 1093 阅读 · 0 评论 -
RGB-D综述
RGB-D显著性检测已成为计算机视觉领域的研究热点,结合RGB与深度信息的互补性,能够有效提升复杂环境下的显著性检测能力。RGB-D显著性检测的目标是利用RGB(可见光)与D(深度)信息的互补性,提高在复杂环境中的目标检测能力。与单模态RGB显著性检测相比,RGB-D方法能够提供额外的场景结构信息,有助于分离前景和背景,在遮挡、低对比度等情况下表现更优。以下是对RGB-D显著性检测的综述性梳理,包括研究背景、挑战、方法分类、关键技术、数据集、评测指标及未来研究方向。代表方法:CPFP(基于全局-局部建模)原创 2025-03-27 21:22:14 · 1249 阅读 · 0 评论 -
RGB-T综述
RGB-T显著性检测已成为计算机视觉研究的重要方向,结合RGB与热红外数据的互补性,能够提升复杂环境下的显著性检测能力。当前研究重点包括跨模态特征融合、Transformer应用、自监督学习等。未来的发展将集中在更高效的模型设计、弱监督学习以及多模态融合,以进一步提升模型的实用性和鲁棒性。原创 2025-03-27 21:19:15 · 887 阅读 · 0 评论 -
显著性检测分类(数据集和评估指标总结)
三:RGB-T显著性检测 (RGB-T SOD)原创 2025-03-17 20:30:09 · 1044 阅读 · 0 评论 -
EDN:通过极致下采样网络的显著性物体检测
问题一:VGG16的模块是什么?VGG16是一种经典的卷积神经网络(CNN)架构,由提出的,主要用于图像分类任务。VGG16 的核心特征是它采用了非常简单而统一的网络结构,主要由一系列卷积层池化层和全连接层构成。其名称中的“16”表示该网络包含了 16 层可训练参数。1. 卷积层(Convolutional Layers)VGG16 中的卷积层非常简单,每个卷积层使用3x3 的卷积核,并且步幅(stride)为 1。原创 2025-02-20 21:05:01 · 1228 阅读 · 0 评论 -
关于协同显著性物体检测的思考
对于 N 张关联图像,协同显著性检测旨在分割共同前景物体并生成协同显著图。为此,本文提出二分支检测框架,分别独立捕获共同依赖与显著前景,顶部分支输出协同注意图,底部分支输出显著图,二者逐元素相乘得到最终协同显著性预测。获取显著性先验图时,本文利用在 DUTS 数据集训练的 EGNet 模型,通过边缘导向方法获取多尺度显著性先验。而以无监督方式生成协同注意图是接下来要解决的挑战。原创 2025-02-20 21:14:25 · 723 阅读 · 0 评论 -
探索显著性检测中语义信息的高效模型
问题一:什么叫做CSNet?CSNet是一种专注于通道和空间特征的神经网络架构,旨在通过同时优化通道维度和空间维度的特征表示,提升模型在计算机视觉任务(如图像分类、目标检测、语义分割等)中的性能。CSNet 的核心思想是通过通道注意力机制和空间注意力机制来增强特征提取能力。核心思想通道维度优化:通过通道注意力机制(Channel Attention)动态调整每个通道的权重,增强重要通道的特征表示。例如,使用模块来学习通道间的依赖关系。空间维度优化。原创 2025-02-20 21:12:15 · 936 阅读 · 0 评论 -
MobileSal:极其高效的RGB-D显著性物体检测模型
问题1:什么叫做深度信息?深度信息(Depth Information):是指图像中每个像素到观察者(或摄像头)之间的距离。深度图像通常通过深度摄像头(如Kinect、LiDAR等)采集,能够提供关于场景中物体相对位置和空间关系的信息。问题二:什么叫做MobileNets网络和ShuffleNets?MobileNets是由 Google 提出的一个轻量级卷积神经网络架构,专门优化了在移动设备上的计算效率。MobileNets 的关键创新是使用深度可分离卷积。原创 2025-02-18 17:02:29 · 970 阅读 · 0 评论 -
基于正则化密集连接金字塔网络的显著实例分割
问题一: 什么叫做显著实例分割(SIS)?显著实例分割(SIS, Salient Instance Segmentation)是一种结合了显著性检测(Salient Object Detection)和实例分割(Instance Segmentation)的任务,目标是从图像中分割出最重要或最显著的物体实例。问题二:什么叫做Mask R-CNN?Mask R-CNN是一种深度学习模型,专门用于**实例分割(Instance Segmentation)**任务。它基于目标检测框架。原创 2025-02-19 15:12:20 · 874 阅读 · 0 评论 -
基于协同表达纯化的协同显著性物体检测(问题)
问题1:什么叫做协同显著性物体检测?协同显著性物体检测(Co-SOD)是一项计算机视觉任务,旨在从一组相关图像中检测并分割出所有图像中共同显著的物体。与单一图像的显著性物体检测(Salient Object Detection, SOD)不同,Co-SOD关注的是多张图像中共享的显著性目标。问题二:什么叫做挖掘协同表示对于定位协同显著性至关重要?在协同显著性物体检测(Co-SOD)任务中,要成功检测并定位一组相关图像中的共同显著性物体,核心问题是如何有效提取并表示图像组中的共性特征(协同表示)。原创 2024-12-24 18:07:16 · 1298 阅读 · 0 评论 -
显著性目标检测:一项调查(总结)
本文是一篇关于显著目标检测的研究综述。显著目标检测是指在自然场景中检测和分割出显著物体的任务,在计算机视觉领域引起了广泛的关注。虽然已经有许多模型被提出并应用于实际应用中,但是对于该领域的深入了解仍然不足。因此,本文旨在全面回顾最近在显著目标检测方面的进展,并将其置于与其他相关领域(如通用场景分割、对象提议生成和注视预测中的显著性)的关系中进行讨论。文章涵盖了228篇文献,包括显著目标检测的起源、关键概念和任务、核心技术和主要建模趋势以及数据集和评估指标等方面的内容。原创 2024-12-12 09:04:25 · 1224 阅读 · 0 评论