自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks无线领域大模型

由于规模和复杂性不断扩大,无线网络日益面临挑战。这些挑战凸显了对先进人工智能驱动策略的需求,特别是在即将到来的 6G 网络中。在本文中介绍 WirelessAgent,这是一种利用大型语言模型 (LLM) 开发能够管理无线网络中复杂任务的 AI 代理的新颖方法。它可以通过高级推理、多模态数据处理和自主决策来有效提高网络性能。演示了 WirelessAgent 在网络切片管理方面的实际适用性和优势。实验结果表明,WirelessAgent能够准确理解用户意图,有效分配切片资源,并始终保持最佳性能。

2024-10-24 16:20:02 1302

原创 Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs

在构建第二个子问题时,可能需要第一个子问题的答案,因此我们假设第一个子问题的答案为A1,第二个子问题的答案为A2,以方便子问题的制定。在撰写最终问题时,请注意语言的流畅性,避免机械地将子问题拼接在一起。我给你举一些例子,请读完后完成你的任务:2p模式涉及两个连续的关系,表示从头实体到目标实体的两步查询(例如。

2024-10-22 17:29:53 1216

原创 CogMG: Collaborative Augmentation Between Large Language Model and Knowledge Graph(LLM和KG协同)

Abstract大模型已经成为问答应用程序中不可或缺部分本文介绍一个1)利用知识图谱解决LLM在QA场景中的局限性,明确针对知识覆盖不完整和知识更新不一致的问题。(2)LLM识别并分解知识图谱不存在的所需知识三元组,丰富这是图谱并是其更新与现实知识需求保持一致。

2024-10-21 18:11:39 991

原创 ENHANCING TEXT-BASED KNOWLEDGE GRAPH COMPLETION WITH ZERO-SHOT LARGE LANGUAGE MODELS: A FOCUS ON SEM

基于文本的训练很大程度上取决于数据的质量和丰富性,通过文本提示大模型可以生成数据结构去丰富知识图谱的内容,但是需要大量的计算资源。为了解决这一问题,我们引入一个成为KGC约束提示框架,设计使用不同的数据集以增强语义丰富度,采用上下文约束的策略来识别数据集的多义实体。

2024-10-17 10:28:24 931

原创 THINK-ON-GRAPH: DEEP AND RESPONSIBLE REASONING OF LARGE LANGUAGE MODEL ON KNOWLEDGE GRAPH(增强KG推理)

将大模型作为代理,交互式地探索KG上的相关实体和关系,并根据检索到的知识进行推理,提出一种Think-on-Graph (ToG)的方式进一步实现范式。1)与LLM相比,ToG具有更好的深度推理能力;2)ToG利用LLM推理和专家反馈,具备知识溯源和知识纠错能力;3)ToG为不同的LLM、KG和提示策略提供灵活的即插即用框架,无需任何额外的培训成本;4)在某些场景下,小型LLM模型的ToG性能可能超过大型LLM。

2024-10-16 11:22:07 827

原创 iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models使用大模型构建知识图谱

大多数的知识都是非结构化的,直接访问有价值信息会变得困难,因此自动构建知识图谱对于构建数据并直接访问至关重要。传统的NLP方法例如实体命名识别和关系提取是信息检索的关键,但需要预定义实体类型和监督学习;当前大模型可以使用零样本学习和小样本学习,然而未解决实体和关系的语义重复问题。本文提出方法,包括四个模块:文档蒸馏器、增量实体提取器、增量关系提取器、图集成器和可视化可以实现广泛的知识图谱构建场景。

2024-10-15 17:49:52 1136

转载 GIT相关知识

Git相关学习

2024-07-16 20:35:30 67

原创 书生普语大模型实战2

请使用本地vscode连接远程开发机,将上面你写的wordcount函数在开发机上进行debug,体验debug的全流程,并完成一份debug笔记(需要截图)。返回一个字典,key为单词,value为对应单词出现的次数。开始执行循环的程序,先从第一个单词got开始,进行if-else循环;接下来根据句子的顺序依次进行段落内容的循环,相同出现的单单词进行计数;最终循环多次,得出最终计数的结果显示,将技术结果进行打印。3、拆分单词为列表,循环统计单词出现的次数。1、首先将大写转化为小写;2、不需要考虑标点;

2024-07-10 21:44:45 639

转载 书生大模型实战型

是一种网络技术,它可以将外网中的任意端口映射到内网中的相应端口,实现内网与外网之间的通信。:网页中集成的VSCode,也可以在本地VSCode中通过SSH连接远程开发,下面就会讲如何配置远程连接。如果我们进行端口的映射则无法使用本地的IP进行访问,就回出现错位并且在网页无法显示我们代码创建的内容。:一个交互式的编程和教学环境,同时内置终端,可以很方便地查看文件,执行代码等。(Terminal, 最轻量级):主要进行命令行操作,或者运行脚本和简单程序。在运行代码之前,需要先使用下面的命令安装以下依赖包,

2024-07-10 20:52:28 89

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除