深度学习常见的三种模型

深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络(CNN)、深度置信网络(DBN)、循环神经网络(RNN)。

1) 卷积神经网络

在机器学习领域,卷积神经网络属于前馈神经网络的一种。不同于传统的全连接神经网络结构,卷积神经网络引入了局部感受区域的策略,如处理图像任务时,利用图像数据的空间结构以及邻近像素间的相关性。这使得单个神经元仅对局部信息进行响应,相邻神经元的感受区域存在重叠。

此外,在卷积层中,所有神经元共享同一个卷积核,从而显著减少了训练参数的数量,提高了网络的泛化能力。通常在卷积层后面会进行降采样操作,对提取的特征进行聚合统计,以进一步减少参数数量并增强网络的泛化能力。

2) 深度置信网络

深度置信网络是一种生成模型,具有若干隐藏层。其内部神经元在同一隐藏层中没有连接,但隐藏层之间的神经元却是全连接的。通过逐层无监督学习,神经网络可以较好地对输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值