- 博客(4)
- 收藏
- 关注
原创 详细分析Squeeze-and-Excitation注意力模块(SE Attention)
self.avg_pool = nn.AdaptiveAvgPool2d(1) #完成了一个平均池化操作,核心功能是动态压缩特征图的空间维度至 1×1输入[b,c,h,w],输出为[b,c,1,1]该操作我认为是对图像进行处理的,这里用27*27像素为例,对照片进行平均池化操作并降为为1*1的点了,这样的处理后只有一个像素点,通道C还未改变,这样的点有什么信息?:神经网络中的构建单元,可以包含其他模块或层,形成树状结构。(全连接层),通常位于模块树的叶子节点。是容器模块,用于组织多个子模块。
2025-03-31 09:17:05
340
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人