使用python进行数据分析_python数据分析项目

许多ufunc是简单的元素级变体,如sqrt,exp

  • 一些函数,如rint,四舍五入取最近的整数。modf,将数组的小数和整数部分分成两个独立数组。
  • NumPy 数组使你可以将许多种数据处理任务表述为简洁的数组表达式。用数组表达式代替循环的做法,通常称为矢量化。矢量化数组运算要比等价的纯python方式快上一两个数量级,尤其是各种数值计算。
  • numpy.where函数是三元表达式x if condition else y 的矢量化版本。np.where 的第二个和第三个参数不必是数组,它们都可以标量值。在数据分析工作中,where通常用于根据另一个数组而产生一个新的数组。
  • 布尔值会被强制转换为1(True)和0(False)。因此,sum可以用来对布尔型数组中的True 值进行计数。
  • 布尔数组还有两个方法any,all,它们对布尔型数组非常有用。any用于测试数组中是否存在一个或多个True,而all则检查数组中所有值是否都是True
  • 跟python 内置的列表类型一样,Numpy数组也可以通过sort 方法就地排序。顶级方法np.sort返回的是数组已排序副本,而就地排序则会修改数组本身。计算数组分位数最简单的办法是对其进行排序,然后选取特定位置的值。
  • Numpy 提供了一些针对一维ndarray 的基本集合运算。最常用的可能要数np.unique。它用于找出数组中的唯一值并返回已排序的结果。
  • np.in1d用于测试一个数组中的值在另个一个数组中的成员资格,返回一个布尔型数组。
  • np.save 和np.load是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为.npy的文件中。
  • 通过np.savez可以将多个数组保存到一个压缩文件中,将数组以关键字参数的形式传入即可。
  • dot函数,用于实现矩阵的点积。任何一个二维矩阵和一个合适的一维数组进行点积,得到是一个一维数组。x。dot(y) = np.dot(x,y)
  • 矩阵论中,行列式,本征值,本征向量,矩阵的逆,QR分解,奇异值分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值