Catch 解读

如有侵权或其他问题,欢迎留言联系更正或删除。 

目录

一  文章相关信息 

二  提出动机

三  模型结构

四  实验结果


一  文章相关信息 

出处: ICLR 时序异常 的高分文章,华东师范大学的工作,最近华师真的在这个领域狠狠发力啊!

代码链接:Anonymized Repository - Anonymous GitHub

二  提出动机

1. 基于重建的方法,易于检测出 “点异常”(明显偏离 概率分布的、正常的范围);

“子序列异常” 由 “概率分布范围内” 的值组成,使其更难检测;

2. 将 时序数据 转换至 频率域 (the frequency domain),有助于发现 “子序列异常”:

左侧 “红色” 部分代表:正常时序数据被注入不同类型异常;右侧 “灰色” 部分代表:注入左侧的异常后,在频率域上对应的振幅发生显著变化。 

如:将频率域的频带(frequency bands)切分为5段,“季节性”异常(seasonal anomalies)将造成第1 - 2频带的显著变化,“形状”异常(shapelet anomalies)将造成第3频带的显著变化。

However, the frequency domain features a long-tailed distribution that most information centralizes in the low frequency bands. Coarse-grained reconstruc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值