如有侵权或其他问题,欢迎留言联系更正或删除。
目录
一 文章相关信息
出处: ICLR 时序异常 的高分文章,华东师范大学的工作,最近华师真的在这个领域狠狠发力啊!
代码链接:Anonymized Repository - Anonymous GitHub
二 提出动机
1. 基于重建的方法,易于检测出 “点异常”(明显偏离 概率分布的、正常的范围);
“子序列异常” 由 “概率分布范围内” 的值组成,使其更难检测;
2. 将 时序数据 转换至 频率域 (the frequency domain),有助于发现 “子序列异常”:
左侧 “红色” 部分代表:正常时序数据被注入不同类型异常;右侧 “灰色” 部分代表:注入左侧的异常后,在频率域上对应的振幅发生显著变化。
如:将频率域的频带(frequency bands)切分为5段,“季节性”异常(seasonal anomalies)将造成第1 - 2频带的显著变化,“形状”异常(shapelet anomalies)将造成第3频带的显著变化。
However, the frequency domain features a long-tailed distribution that most information centralizes in the low frequency bands. Coarse-grained reconstruc