Win11+WSL2安装cuda11.8,Anaconda配置Pytorch2.4-GPU版本

 1.WSL安装

首先安装WSL2,按照这个教程,目前我是安装到E盘

全网最全Win10/11系统下WSL2+Ubuntu20.04的全流程安装指南(两种支持安装至 D 盘方式)_win10 wsl2安装-CSDN博客

 2.CUDA安装

安装完之后,输入nvidia-smi,会显示Command ‘nvidia-smi‘ not found, but can be installed with,按照下面的教程解决(亲测好使)

WSL2执行nvidia-smi报错:Command ‘nvidia-smi‘ not found, but can be installed with-CSDN博客

然后就可以看到自己的显卡型号,以及支持的最高的CUDA版本 

进入 ~下载CUDA ,下面链接为CUDA11.8下载的链接,直接按照命令下载就可以

CUDA Toolkit 11.8 Downloads | NVIDIA Developer

2.1.安装GCC

在WSL2的终端中,使用以下命令安装GCC和编译所需的工具:

sudo apt-get update
sudo apt-get install build-essential

2.2.验证GCC安装

安装完成后,使用以下命令查看GCC的版本,以确保安装成功:

gcc --version

如下图所示表示安装成功 

2.3.安装CUDA 11.8

在安装GCC之后,您可以继续进行CUDA 11.8的安装。使用您之前下载的CUDA安装文件:

sudo sh cuda_11.8.0_520.61.05_linux.run

在安装过程中,按照提示操作,输入accept继续安装。如下图显示安装成功

2.4.设置环境变量

安装完成后,将CUDA的路径添加到环境变量中。编辑~/.bashrc文件,添加以下内容:

输入 

vim ~/.bashrc

进入编辑,输入i,进入编辑模式,输入下面的内容 

export PATH=$PATH:/usr/local/cuda-11.8/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64

 显示如下

 然后按下ESC键,输入 :wq,退出编辑

2.5.验证CUDA安装

运行以下命令:

nvcc --version

如下图所示,显示安装成功

 3.Anaconda安装

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

 使用清华镜像源下载

输入命令进行安装,bash 后面的是下载的Anaconda的版本

bash Anaconda3-xxxxx

安装过程一路输入yes。

下图显示安装成功

配置环境变量: 安装完成后,将 Anaconda 的路径添加到环境变量中。编辑~/.bashrc文件,添加以下内容:

export PATH=$PATH:/home/用户名/anaconda3/bin

保存文件后,运行以下命令使更改生效:

source ~/.bashrc

验证安装是否成功:

conda --version

如下图所示,显示安装成功

4.安装pytorch2.4

conda create -n torch2.4 python=3.11

激活环境

conda activate pytorch2.4

找到pytorch官网Previous PyTorch Versions | PyTorch,输入默认的安装命令

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0  pytorch-cuda=11.8 -c pytorch -c nvidia

 

### WSL环境下解决GPU版本PyTorch版本不兼容的解决方案 在WSL环境中,确保GPU版本PyTorch版本兼容是一个复杂的过程,涉及多个工具和依赖项的正确配置。以下是详细的分析和解决方案。 #### 1. 配置WSL2作为基础环境 为了支持GPU加速功能,在Windows Subsystem for Linux (WSL) 中必须启用WSL2模式。可以通过以下命令设置默认版本WSL2[^3]: ```bash wsl --set-default-version 2 ``` 此外,还需要确认已安装适用于WSL2的NVIDIA驱动程序以及CUDA Toolkit。这一步骤对于实现GPU计算至关重要。 #### 2. 安装合适的PyTorch版本 根据目标硬件(即所使用的CUDA版本),需选择匹配的PyTorch版本。如果通过`conda`管理包,则可以运行如下命令来安装指定版本PyTorch及其相关组件[^1]: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 此方法会自动处理大部分依赖关系并确保各部分之间的协调工作。 当采用pip方式进行安装时,应特别注意指定确切的URL地址以便获取对应于特定CUDA版本(如这里提到的是cu118代表CUDA 11.8) 的预编译二进制文件[^2]: ```bash pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118 ``` #### 3. 使用Docker简化多版本管理 另一种有效的方法是利用Docker容器技术动态调整所需的CUDA版本而无需频繁更改主机系统的全局设置。创建一个基于官方镜像的新容器实例,并定义好必要的runtime选项即可轻松完成切换操作[^4]: ```dockerfile FROM nvidia/cuda:12.1-base-ubuntu20.04 RUN apt-get update && \ apt-get install -y python3-pip && \ pip3 install torch==2.1.1+cu118 torchvision==0.16.1+cu118 torchaudio==2.1.1 --extra-index-url https://download.pytorch.org/whl/cu118 ``` 构建上述自定义镜像之后启动服务端口映射或者挂载本地目录到容器内部供进一步开发测试之用。 --- #### 总结 综合来看,无论是借助Anaconda生态还是原生Pip渠道亦或是引入现代化容器化手段都能很好地应对因不同软件栈之间可能引发的各种潜在冲突情况;关键是始终围绕着实际需求出发选取最恰当的技术路径加以实践验证直至达成预期效果为止!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值