OpenAI API调用方法简介,向GPT说“Hello!”

    随着人工智能技术的迅速发展,越来越多的大模型被研发出来,这些模型具有强大的功能,其中代表性的GPT就是一种强大的大语言模型。而想要从零开始实现这种大模型,需要大量的成本。好在OpenAI提供了可以访问GPT模型的API,借助 OpenAI API,开发人员可以快速集成先进的自然语言处理功能,以开发更多创新且实用的应用。接下来本文将主要讲解OpenAI API的调用方法。

    欢迎各位关注我的公众号!分享有趣的知识!

一.准备

    OpenAI API的KEY可以去官网的OpenAI控制台创建并获取。然而,可能由于网络问题不能访问官网的API,所以也可以使用中转API Key。

    由于KEY(密钥)是访问数据和服务的凭证,将其保存在环境变量中要比直接写在代码中更安全,以防由于程序泄露或报错造成可能的密钥泄露。同时,使用环境变量存储KEY更为方便,可以在不同环境中部署,而无需在程序中管理冗长的KEY值。

    那么接下来将获取好的Key输入到环境变量中,操作如下:

1.右键点击 “此电脑”,然后点击 “属性”。

2.找到并点击高级系统设置。

3.点击环境变量。

    4.新建环境变量。

    5.新建变量名为OPENAI_API_KEY的环境变量,变量值为KEY值。如果使用中转API,可以新建另外新建一个名为OPENAI_API_URL的环境变量,其值为对应的URL。创建完毕后确认。

    配置好环境变量后,

<think>嗯,用户问的是除了OpenAI库之外,Python还有什么调用API方法。我需要先理清楚用户的需求。可能用户已经知道使用官方的OpenAI库,但想探索其他方式,比如直接使用HTTP请求或者其他第三方库。我需要列举几种常见的方法,并给出具体的例子,这样用户可以根据自己的情况选择。 首先,用户可能想知道如何用Python内置的库,比如urllib或者requests来发送HTTP请求。requests库更简洁,应该重点介绍。然后,可能有其他第三方库,比如httpx,支持异步,这也是一个不错的点。另外,用户可能还想知道是否有非官方的OpenAI封装库,比如openai库的替代品,或者其他社区维护的库,比如Trio或aiohttp结合的方式。 还要考虑用户的使用场景。比如,如果用户需要异步处理,那么使用httpx或aiohttp会更合适。如果是简单的同步请求,requests足够。同时,可能需要提到环境配置,比如设置API密钥,处理响应和错误,这些细节对用户来很重要。 需要确保每个方法都有示例代码,并且明优缺点。比如直接使用requests更灵活,但需要自己处理请求和响应;而第三方库可能简化操作,但依赖外部维护。还要提醒用户注意API版本和认证方式,比如Bearer Token的使用。 另外,用户可能对RESTful API的基本概念不太熟悉,需要稍微解释一下,但问题中已经提到调用API方法,所以可能不需要深入。重点放在Python的实现方式上。 最后,检查是否有遗漏的方法,比如使用http.client这样的底层库,但可能不如requests方便,所以可以简要提及。总结的时候,根据需求推荐不同的方法,帮助用户做出选择。</think>在Python中,除了官方提供的`openai`库,还有多种方式可以调用API接口。以下是常见方法的逐步明: --- ### 1. **直接使用`requests`库** 这是最通用的HTTP请求方法,适用于任何遵循RESTful规范的API。 ```python import requests # 配置参数 API_ENDPOINT = "https://api.openai.com/v1/chat/completions" API_KEY = "your-api-key" headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } data = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Hello!"}] } # 发送POST请求 response = requests.post(API_ENDPOINT, headers=headers, json=data) # 处理响应 if response.status_code == 200: print(response.json()["choices"][0]["message"]["content"]) else: print(f"Error: {response.status_code}, {response.text}") ``` **优点**:灵活,可自定义请求头和参数;**缺点**:需手动处理错误和重试逻辑。 --- ### 2. **使用异步库`httpx`** 适合需要高性能异步请求的场景(如并发调用API)。 ```python import httpx import asyncio async def call_api(): API_ENDPOINT = "https://api.openai.com/v1/chat/completions" API_KEY = "your-api-key" async with httpx.AsyncClient() as client: response = await client.post( API_ENDPOINT, headers={"Authorization": f"Bearer {API_KEY}"}, json={"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Hello!"}]} ) return response.json() # 运行异步函数 result = asyncio.run(call_api()) print(result) ``` **优点**:支持异步,提升效率;**缺点**:需要理解异步编程模型。 --- ### 3. **使用第三方封装库** 社区维护的简化库(需注意兼容性和安全性): - **`openai`的替代品**:例如`openai-api`(非官方) ```bash pip install openai-api ``` ```python from openai_api import OpenAI client = OpenAI(api_key="your-api-key") response = client.chat_completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello!"}] ) print(response.choices[0].message.content) ``` **优点**:简化调用;**缺点**:依赖第三方维护,可能滞后于官方更新。 --- ### 4. **底层`http.client`模块** Python标准库中的底层实现(一般不推荐,但适合特殊需求): ```python from http.client import HTTPSConnection import json conn = HTTPSConnection("api.openai.com") headers = { "Authorization": "Bearer your-api-key", "Content-Type": "application/json" } body = json.dumps({ "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Hello!"}] }) conn.request("POST", "/v1/chat/completions", body=body, headers=headers) response = conn.getresponse() print(response.read
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值