最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
chromosome_num(int):染色体数,对应需要寻优的参数个数
chromosome_length(int):染色体长度
max_value(float):染色体十进制数值最大值
min_value(float):染色体十进制数值最小值
iter_num(int):迭代次数
deta(float):量子旋转角度
‘’’
self.population_size = population_size
self.chromosome_num = chromosome_num
self.chromosome_length = chromosome_length
self.max_value = max_value
self.min_value = min_value
self.iter_num = iter_num
self.deta = deta
#2.2 种群的量子形式初始化===========
def species_origin_angle(self):
‘’'种群初始化
input:self(object):QGA类
output:population_Angle(list):种群的量子角度列表
population_Angle2(list):空的种群的量子角度列表,用于存储交叉后的量子角度列表
‘’’
population_Angle = []
for i in range(self.chromosome_num):
tmp1 = [] #存储每个染色体所有取值的量子角度
for j in range(self.population_size):
tmp2 = [] #存储量子角度
for m in range(self.chromosome_length):
a = np.pi * 2 * np.random.random()
tmp2.append(a)
tmp1.append(tmp2)
population_Angle.append(tmp1)
return population_Angle
#将初始化的量子角度序列转换为种群的量子系数列表
def population_Q(self,population_Angle):
‘’’
input:self(object):QGA类
population_Angle(list):种群的量子角度列表
output:population_Q(list):种群的量子系数列表
‘’’
population_Q = []
for i in range(len(population_Angle)):
tmp1 = [] #存储每个染色体所有取值的量子系数对
for j in range(len(population_Angle[i])):
tmp2 = [] #存储每个染色体的每个取值的量子对
tmp3 = [] #存储量子对的一半
tmp4 = [] #存储量子对的另一半
for m in range(len(population_Angle[i][j])):
a = population_Angle[i][j][m]
tmp3.append(np.sin(a))
tmp4.append(np.cos(a))
tmp2.append(tmp3)
tmp2.append(tmp4)
tmp1.append(tmp2)
population_Q.append(tmp1)
return population_Q
#2.3计算适应度函数值==========
def translation(self,population_Q):
‘’'将种群的量子列表转换为二进制列表
input:self(object):QGA类
population_Q(list):种群的量子列表
output:population_Binary:种群的二进制列表
‘’’
population_Binary = []
for i in range(len(population_Q)):
tmp1 = [] # 存储每个染色体所有取值的二进制形式
for j in r