基于论文《大规模电动汽车充换电设施可调能力聚合评估与预测》开发者说明文档

real_data_model.m 开发者说明文档

脚本概述

本MATLAB脚本实现了基于论文《大规模电动汽车充换电设施可调能力聚合评估与预测》(鲍志远,胡泽春)中提出的预测模型和评估方法。脚本使用真实的充电数据、天气数据和分时电价数据,实现了LSTM与线性模型混合的预测方法,并通过累积能量-功率边界模型评估充电设施的可调能力。

满足的需求

需求实现方式
1. 使用真实数据进行预测读取Dataset目录下的真实充电交易数据、天气数据和分时电价数据
2. 符合论文提出的预测模型实现了LSTM+线性模型的混合预测方法以及"先聚合,后分解"策略
3. 确保结果合理性完整的数据预处理、异常值过滤和鲁棒的错误处理机制
4. 提供可视化功能自动生成预测结果对比、功率边界模型和累积能量容量图

文件依赖

  • 必需文件
    • real_data_model.m - 主脚本文件
    • Dataset/Charging_Data.csv - 充电交易数据
    • Dataset/Weather_Data.csv - 气象数据
    • Dataset/Time-of-use_Price.csv - 分时电价数据

主要功能模块

脚本按功能模块化设计,主要包括:

1. 系统环境检查与数据路径设置

  • 检查必要工具箱是否安装
  • 自动检测数据路径或允许用户输入
  • 验证必要文件是否存在

2. 数据加载与预处理

  • 加载分时电价、天气和充电数据
  • 使用datastore处理大型CSV文件
  • 鲁棒的错误处理确保数据加载过程中的异常不会导致程序终止

3. 数据清洗和特征工程

  • 多格式日期时间解析
  • 提取充电时间特征(时长、小时、星期几、月份、年、是否周末)
  • 过滤异常充电时长和电量记录

4. 按小时聚合充电负荷

  • 选择数据量最多的区域进行分析
  • 创建时间序列数据并聚合每小时充电负荷
  • 平滑处理异常尖峰负荷

5. 合并天气与电价数据

  • 为每个小时的负荷数据匹配对应的天气信息
  • 根据时段匹配电价数据
  • 生成完整的特征数据集用于模型训练

6. 模型训练与测试数据准备

  • 准备序列特征矩阵,包含历史负荷和环境特征
  • 划分训练集和测试集
  • 为LSTM格式化输入数据

7. 线性回归模型训练

  • 使用fitlm训练线性回归模型
  • 计算预测指标(RMSE、MAE、MAPE)

8. LSTM深度学习模型训练

  • 构建LSTM神经网络结构
  • 设置训练参数并训练模型
  • 保存训练好的LSTM模型

9. 混合模型预测

  • 结合线性模型和LSTM模型的预测结果
  • 计算混合模型性能指标

10. "先聚合,后分解"策略实现

  • 模拟多个充电站点负荷
  • 将聚合预测分解到各站点
  • 评估分解策略的性能

11. 累积能量-功率边界模型

  • 计算上调和下调功率边界
  • 计算累积能量容量
  • 评估充电设施的可调容量

12. 结果可视化

  • 绘制预测结果对比图
  • 绘制功率边界模型图
  • 绘制累积能量容量图
  • 保存图像结果

13. 结果保存

  • 将分析结果保存为MAT文件
  • 生成包含详细指标的文本报告
  • 创建中间结果备份

运行要求

  1. MATLAB环境

    • MATLAB R2019b或更新版本
    • Statistics and Machine Learning Toolbox
    • Deep Learning Toolbox
  2. 硬件建议

    • 处理大型数据集推荐8GB以上RAM
    • 训练LSTM模型推荐GPU加速

参数配置

脚本提供多个参数用于配置运行方式:

% 主要参数
sample_size = 50000;  % 读取的充电记录数量,-1表示全部读取
sequence_length = 24; % 序列长度,使用前24小时预测下一小时
test_ratio = 0.2;     % 测试集比例
lstm_weight = 0.7;    % LSTM模型在混合模型中的权重

% 可调能力边界参数
params.upper_margin = 0.3;  % 上调功率边界系数
params.lower_margin = 0.2;  % 下调功率边界系数
params.min_power = 0;       % 最小功率限制
params.max_power = inf;     % 最大功率限制
params.time_resolution = 1; % 时间分辨率(小时)

输出结果

脚本运行后生成以下输出:

  1. 实时日志:运行过程中打印处理进度和关键指标
  2. MAT文件real_data_ev_charging_results.mat 包含完整的分析结果
  3. 文本报告real_data_ev_charging_results.txt 包含结果摘要
  4. 图像文件real_data_flexibility_results.png 包含可视化结果
  5. 备份文件partial_results_backup.mat 包含中间计算结果

使用示例

% 简单运行脚本
run('real_data_model.m');

% 加载结果进行进一步分析
results = load('real_data_ev_charging_results.mat');
disp(['混合模型RMSE: ', num2str(results.rmse_hybrid)]);
disp(['总可调容量: ', num2str(results.total_capacity), ' kWh']);

符合论文要求的关键实现

  1. 混合预测模型

    • 线性回归模型捕获基本趋势
    • LSTM深度学习模型捕获非线性时序特征
    • 加权组合最终预测结果
  2. "先聚合,后分解"策略

    • 先聚合所有充电站点数据进行整体预测
    • 根据各站点特征将预测结果分解到各站点
    • 降低了计算复杂度,提高了预测效率
  3. 累积能量-功率边界模型

    • 计算上下调功率边界
    • 累积评估能量容量
    • 量化充电设施的灵活调节能力
  4. 真实数据适配

    • 鲁棒的数据处理机制应对真实世界的脏数据
    • 多种数据格式兼容
    • 异常检测和平滑处理

注意事项

  1. 处理大型数据集时可能需要调整sample_size参数避免内存溢出
  2. LSTM模型训练可能较为耗时,可根据需要调整网络结构和训练参数
  3. 数据文件路径按需调整,支持相对或绝对路径
  4. 输出图像默认保存在当前工作目录
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值