一、热力图的绘制
# 计算相关系数矩阵
correlation_matrix = data[continuous_features].corr()
# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300
# 绘制热力图
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap of Continuous Features')
plt.show()
使用Seaborn库的 heatmap 函数绘制热力图,各参数含义如下:
1. correlation_matrix :要可视化的相关矩阵数据
2. annot=True :在热力图上显示数值
3. cmap='coolwarm' :使用从蓝色到红色的渐变色系
4. vmin=-1 :颜色映射的最小值设为-1
5. vmax=1 :颜色映射的最大值设为1
该热力图通常用于展示变量间的相关系数矩阵,其中:- 颜色越红表示正相关性越强
- 颜色越蓝表示负相关性越强
- 颜色接近白色表示相关性接近0
二、子图的绘制
子图同时展示多个相关但独立的数据视图,一个容器可以轮流显示不同图表,但图表不能脱离容器存在。
import pandas as pd
import matplotlib.pyplot as plt
# 定义要绘制的特征
features = ['An