数据集:数据集又分为训练数据集,测试数据集。
泛化能力:泛化能力是指模型在面对未见过数据集时的表现能力,是指模型对新样本的适应能力,亦即预测新样本的准确性。
泛化误差:在新的样本上的误差
经验误差:在训练集上的误差,亦称“训练误差”,是在已知样本上的误差。
过拟合:构建的模型对于现有信息量来说过于复杂。如果模型拟合时过分关注训练集的细节,那么得到的模型可能在训练集上表现优异,泛化能力却很差,这就发生了过拟合。解释一下可以这样理解,训练的模型在已知的数据上表现很好,在新的数据集上表现不好。
欠拟合:构建的模型对于现有信息量来说过于简单。如果模型拟合时对数据没有做到充分考虑,那么得到的模型可能在训练集上表现就很差,这就发生了欠拟合。欠拟合是模型在已知的数据集上的表现都很差。