机器学习基本概念

本文介绍了数据集的分类(训练集和测试集),并详细阐述了模型的泛化能力、泛化误差与经验误差。特别强调了过拟合(模型在训练集上表现好但在新数据上差)和欠拟合(模型对训练数据处理不足,整体表现差)的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集:数据集又分为训练数据集,测试数据集。

泛化能力:泛化能力是指模型在面对未见过数据集时的表现能力,是指模型对新样本的适应能力,亦即预测新样本的准确性。

泛化误差:在新的样本上的误差

经验误差:在训练集上的误差,亦称“训练误差”,是在已知样本上的误差。

过拟合:构建的模型对于现有信息量来说过于复杂。如果模型拟合时过分关注训练集的细节,那么得到的模型可能在训练集上表现优异,泛化能力却很差,这就发生了过拟合。解释一下可以这样理解,训练的模型在已知的数据上表现很好,在新的数据集上表现不好。

欠拟合:构建的模型对于现有信息量来说过于简单。如果模型拟合时对数据没有做到充分考虑,那么得到的模型可能在训练集上表现就很差,这就发生了欠拟合。欠拟合是模型在已知的数据集上的表现都很差。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值