毫米波雷达与激光雷达的融合(在可见度较低的环境中获得更为稳定可靠的定位和建图效果)

基础知识:

3D毫米波雷达,4D毫米波雷达:

激光雷达:三维坐标XYZ值和反射强度

现有成果:

激光惯导SLAM(激光雷达和IMU融合)

方法:选用LOAM(Laser Odometry and Mapping)即激光里程计与建图,提取激光点云的面特征

问题:

从原理上说,SLAM作为一种实时定位和建图的算法,是通过新的一帧观测量(即激光点云)和上一帧的观测量(点云模型)作对比,来获得当前帧和上一帧传感器(即激光雷达)相对位姿的改变。

在烟雾浓重、可见度非常低的情况下,激光雷达有效作用距离缩短,减少了前后两帧激光点云之间的重叠部分,从而给定位造成更大的困难。在以上实验中,如果现场没有堆放大量的物品,在低可见度条件下定位和建图有一定的可能会失败。

解决方案:

4D毫米波雷达融合惯导SLAM

IEEE RA-L上的论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值