约束多目标问题核心难点:1.良好的收敛性 2.良好的多样性 3.可行性
传统的多目标优化方法在处理同时具有多个局部最优和复杂不可行域的CMOPs时,很难平衡收敛性与约束满足,特别是当解空间存在大片不可行区域时:
过于追求收敛性:当一个新产生的、但不可行的解在目标上优于当前的可行解时,如果算法接受了这个新解,种群可能会被“诱导”至无约束帕累托前沿(PF),而忽略了约束的存在
过于强调约束满足:反之,如果算法因为新解不可行而拒绝了它,种群可能会失去探索更优目标区域的机会,从而轻易地陷入局部最优的可行域中
CMOEA面临的困境。(a) 偏重收敛性,种群趋向无约束PF。(b) 偏重约束满足,种群易陷入局部最优。根据论文中图2绘制。
理想的情况是找到一组分布性好且收敛性强的可行解(图c),但许多算法往往只能得到分布性较差的解(图d)。
面对这个难题,最近的算法采用两阶段或者多种群的方式来解决,这里采用的是两阶段的方式来解决这个问题;
(a) 第一阶段:忽略约束,向无约束PF探索。(b) 第二阶段:引入约束处理,向约束PF收敛。
我们在第一阶段算法 引导种群快速穿过广大的不可行区域,避免因过早地陷入局部可行域,第二阶段引导种群有效地收敛到全局的、满足约束的帕累托前沿,这种两阶段的方式,可以有效的解决大片不可行区域的阻碍;这种框架已经成为大多数算法解决CMOPS问题的基础框架,需要在内部做出创新的地方,可能是约束处理机制部分
约束处理机制总结大致分为:
1.罚函数
这是最直接的一类方法,其核心思想是将一个约束优化问题(CMOP)转化为一个无约束的多目标优化问题(MOP)。
-
该方法通过将一个代表约束违反度(Constraint Violation, CV)的惩罚项添加到不可行个体的适应度函数中,从而使这些解在进化选择中处于劣势 。通常会使用一个惩罚因子λ 来平衡目标函数和约束之间的
-
缺点: 罚函数法的最大挑战在于惩罚因子的设定 。这个值的设置往往依赖于具体问题,需要精细调整才能为不可行解找到一个最优的惩罚程度 。即使是一些自适应的惩罚方法,其用于调整因子的反馈信息也常常是有偏差的关系
2.目标与约束分离处理法
1) 约束支配原则 (Constraint Dominance Principle, CDP)
工作原理: CDP 在传统帕累托支配的基础上,增加了针对不可行解的比较原则 。具体来说:一个可行解总是优于任何一个不可行解 ;在两个都是不可行解的情况下,约束违反度(CV)更小的那个解更优 。
缺点: 由于可行解通常比不可行解拥有更高的优先级,采用CDP的算法很容易被困在局部的最优可行域中,难以跳出以探索更广阔的空间 。
2) 随机排序法 (Stochastic Ranking, SR)
工作原理: 该方法以一定的概率来决定是优先比较目标函数还是优先比较约束 。它引入一个概率参数Pf 。当Pf 大于一个随机数时,就优先比较目标函数;反之,则优先比较约束 。
缺点: 对于不同特性的CMOPs,很难找到一个最优的概率参数 Pf 值 。此外,由于比较的随机性,算法常常会保留一些收敛性很好但却是不可行的解 。
3) Epsilon约束处理法 (Epsilon constrained handling)
工作原理: 该技术采用一种约束违反的容忍机制 。它定义一个ε 值(epsilon level),并将约束违反度小于 ε 的不可行解也视作“可接受”的或“近似可行”的解 。在搜索过程中,ε 的值会动态调整,以控制对约束的松弛程度 。
缺点: 同样地,该方法需要仔细调整参数来控制 ε 值的下降速度 。并且,它在寻找位于可行域边界上的帕累托最优解时会遇到困难和限制 。
如何处理约束以及平衡收敛和多样,是处理约束多目标问题的核心