python实现Bellman-Ford、Dijkstra算法--最小费用最大流问题

本文介绍了计算最短路径的贝尔曼-福特算法和迪杰斯特拉算法,以及结合两者解决最小费用最大流问题的策略。通过多次迭代和增广链的调整,找到流量最大且费用最低的路径。Python代码示例展示了算法的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

贝尔-算法 (BellmanFord algorithm)用于计算出起点到各个节点的最短距离,支持存在负权重的情况 它的原理是对图进行最多V-1次松弛操作,得到所有可能的最短路径。

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。 基本思想通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

目录

引言

问题描述

最小费用最大流问题

​算法思想 

实现过程

代码实现

python实现如下


问题描述

最小费用最大流问题

最小费用最大流问题是经济学和管理学中的一类典型问题。在一个网络中每段路径都有"容量"和"费用"两个限制条件下,此类问题的研究试图寻找出:流量从A到B,如何选择路径、分配经过路径的流量,可以达到所用的费用最小的要求。

最小费用最大流建立在最大流网络流问题的基础之上。

算法思想 

 1、把各条弧上单位流量的费用看成某种长度,用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

2、再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

3、调整增广链上前向边和后向边的流量。(当增广链上前向边为饱和边时,寻找下一条增广链,可以看做把该饱和边刨去)

4、如此重复第1、2、3步,直到找不到可扩充路(增广链),最终得到最小费用最大流。

实现过程

(1)用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

(2)再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

由图像可知流量增至最大可能值为:2。

(3)调整增广链上前向边和后向边的流量。

(4)用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

(5)再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

由图像可知流量增至最大可能值为:8。

(6)调整增广链上前向边和后向边的流量。

(7)用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

(8)再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

由图像可知流量增至最大可能值为:6。

(9)调整增广链上前向边和后向边的流量。

(10)用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

(11)再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

由图像可知流量增至最大可能值为:8。

(12)调整增广链上前向边和后向边的流量。

(13)用Dijkstra求最短路的方法确定一条自Vs至Vt的最短路。

(14)再将这条最短路作为可扩充路(增广链),用求解最大流问题的方法将其上的流量增至最大可能值。

由图像可知流量增至最大可能值为:18。

(15)调整增广链上前向边和后向边的流量。

(16)用Dijkstra求最短路的方法无法确定一条自Vs至Vt的最短路。

(17)最终得到最小费用最大流。

最大流为:各条边的流量与对应边的费用积的总和=1344。

代码实现

python实现如下

class Graph:
    def __init__(self,num):
        self.data_li = [['inf' for i in range(num)] for j in range(num)]    #创建一个记录每个点到其余个点的路径长度的表,开始时全为inf
        self.mark = []              #用于记录已经标记过的点
        self.distance = ['inf' for i in range(num)]          #记录目前起始点到其余个的最短距离
        self.path = ['inf' for i in range(num)]
        self.data_f_li = [[('inf',0) for i in range(num)] for i in range(num)]
        self.expand_li = [['inf' for i in range(num)] for j in range(num)]    #创建一个记录每个点到其余个点的路径长度的表,开始时全为inf

    def add_edge(self,data,data_f):  #记录各点到可到达的其余点的路径长度
        for i in data:
            self.data_li[i[0]][i[1]] = i[2]
            self.expand_li[i[0]][i[1]] = i[2]
        for i in data_f:
            self.data_f_li[i[0]][i[1]] = (i[2],0)

    def dijkstra(self,start,num):
        self.mark = []  # 用于记录已经标记过的点
        self.distance = ['inf' for i in range(num)]  # 记录目前起始点到其余个的最短距离
        self.path = ['inf' for i in range(num)]
        self.mark.append(start)
        self.distance[start] = 0
        que = []
        que.append(start)
        while que:
            curnode = que.pop(0)
            for i in range(len(self.data_li[curnode])):
                if i not in self.mark:
                    if  self.distance[i] == 'inf':
                        if self.data_li[curnode][i] == 'inf':
                            continue
                        else:
                            self.distance[i] = self.distance[curnode] + self.data_li[curnode][i]
                            self.path[i] = curnode
                            continue
                    if self.data_li[curnode][i] == 'inf':
                        continue
                    else:
                        if self.distance[curnode] + self.data_li[curnode][i] < self.distance[i]:
                            self.distance[i] = self.distance[curnode] + self.data_li[curnode][i]
                            self.path[i] = curnode
            cur_min_val = [self.distance[i] for i in range(len(self.distance)) if i not in self.mark and self.distance[i] != 'inf']
            if cur_min_val:
                cur_min_val = min(cur_min_val)
                for i in range(len(self.distance)):
                    if i not in self.mark:
                        if self.distance[i] == cur_min_val:
                            self.mark.append(i)
                            que.append(i)
        if self.path[-1] == 'inf':
            return
        li = []
        li.append(len(self.path)-1)
        a = len(self.path)-1
        while a:
            if self.path[a] == 'inf':
                break
            else:
                li.insert(0,self.path[a])
                a = self.path[a]
        return li

    def bellman_ford(self,start,num):
        information = self.dijkstra(start,num)
        while information:
            min_val = min([self.data_f_li[information[i]][information[i+1]][0] - self.data_f_li[information[i]][information[i+1]][1] for i in range(len(information)-1)])
            for i in range(len(information)-1):
                self.data_f_li[information[i]][information[i+1]] = (self.data_f_li[information[i]][information[i+1]][0],self.data_f_li[information[i]][information[i+1]][1] + min_val)
            for i in range(len(information)-1):
                if self.data_f_li[information[i]][information[i+1]][0] == self.data_f_li[information[i]][information[i+1]][1]:
                    self.data_li[information[i]][information[i+1]] = 'inf'
            information = self.dijkstra(start,num)
        expand = 0
        for i in range(len(self.data_f_li)):
            for j in range(len(self.data_f_li[0])):
                if self.data_f_li[i][j][1] != 0:
                    expand += self.data_f_li[i][j][1] * self.expand_li[i][j]
        return expand

if __name__ == '__main__':
    data = [(0,1,8),(0,2,10),(0,3,15),(1,4,9),(1,5,11),(2,5,8),(2,6,6),(3,6,14),(4,7,8),(5,7,9),(6,7,10)]
    data_f = [(0,1,15),(0,2,10),(0,3,20),(1,4,7),(1,5,10),(2,5,8),(2,6,2),(3,6,18),(4,7,6),(5,7,16),(6,7,20)]
    d = Graph(8)
    d.add_edge(data,data_f)
    print(d.bellman_ford(0,8))
### 单纯形法实现最大网络流问题 单纯形法是一种用于求解线性规划问题的有效方法,能够处理具有多个决策变量和复杂约束条件的问题[^1]。在网络流问题中,可以通过构建适当的线性规划模型来表示流量的最大化目标以及节点间的容量限制。 #### 构建线性规划模型 为了利用单纯形法解决最大网络流问题,可以按照以下方式定义线性规划模型: - **决策变量**: 设 \( x_{ij} \) 表示从节点 \( i \) 到节点 \( j \) 的流量。 - **目标函数**: 最大化总流出量减去流入源节点的负向流量: \[ \text{Maximize } Z = \sum_{j} x_{sj} \] 其中 \( s \) 是源节点。 - **约束条件**: - 容量约束:对于每条边 \( (i, j) \),满足 \( 0 \leq x_{ij} \leq c_{ij} \)[^2]。 - 流守恒约束:对于除源节点和汇节点外的所有中间节点 \( k \),满足: \[ \sum_{i} x_{ik} - \sum_{j} x_{kj} = 0 \] #### Python 实现示例 以下是基于 `scipy.optimize.linprog` 库的一个简单实现,该库内部实现了单纯形法或其他优化算法: ```python from scipy.optimize import linprog import numpy as np # 定义图结构 c = [3, 2, 5, 7, 4, 6] # 边的容量列表 edges = [(0, 1), (0, 2), (1, 3), (2, 3), (1, 4), (4, 3)] # 图中的边 n_nodes = max(max(edge) for edge in edges) + 1 # 节点总数 source_node = 0 # 源节点 sink_node = 3 # 汇节点 # 创建系数矩阵 A 和右侧常数 b A_eq = [] b_eq = [] for node in range(n_nodes): if node != source_node and node != sink_node: row = [0] * len(edges) for idx, (u, v) in enumerate(edges): if u == node: row[idx] -= 1 elif v == node: row[idx] += 1 A_eq.append(row) b_eq.append(0) # 添加源节点的净流出等于汇节点的净流入 row_source = [0] * len(edges) for idx, (u, _) in enumerate(edges): if u == source_node: row_source[idx] = 1 A_eq.append(row_source) b_eq.append(-np.inf) # 这里设置为无穷大以允许任意正流量 # 设置目标函数(最小化负的目标) objective_function = [-capacity for capacity in c] # 解决线性规划问题 result = linprog(objective_function, bounds=[(0, cap) for cap in c], A_eq=A_eq, b_eq=b_eq, method='highs') if result.success: print(f"最大流: {-result.fun}") else: print("无法找到解决方案") ``` 此代码片段展示了如何将最大网络流问题转化为线性规划形式并使用单纯形法进行求解[^4]。 #### 结果解释 上述程序通过构造线性规划模型解决了最大网络流问题。最终输出的结果即为目标函数的最大值,代表了网络中的最大可能流量。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

!continue!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值