Text2Vec语义相似度分析

环境

python -m venv text2vec-env
source text2vec-env/bin/activate

pip install -U text2vec

安装

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

下载模型

from text2vec import SentenceModel

# 示例:中文文本相似度模型
model = SentenceModel('shibing624/text2vec-base-chinese')  # 也支持其他模型 

分析语义相似度代码

from text2vec import SentenceModel, cos_sim

# 加载模型
model = SentenceModel("shibing624/text2vec-base-chinese")

# 句子对
sentence_pairs = [
    ("他去上班了", "他正在上班"),
    ("苹果公司发布新产品", "小米推出新手机"),
    ("天气很好", "适合出去散步"),
    ("我要去买菜", "我打算逛商场"),
]

# 计算相似度
for s1, s2 in sentence_pairs:
    vec1 = model.encode(s1)
    vec2 = model.encode(s2)
    score = cos_sim(vec1, vec2).item()  # ✅ 转换为 float
    print(f"[{s1}] vs [{s2}] 相似度:{score:.4f}")

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值