1. 背景介绍
1.1 问题的由来
在当今人工智能时代,深度学习技术已经成为了解决各种复杂问题的强大工具。其中,卷积神经网络 (Convolutional Neural Network, CNN) 凭借其强大的特征提取能力,在图像识别、自然语言处理等领域取得了巨大的成功。而手写体数字识别作为计算机视觉领域的一个经典问题,也成为了测试和验证深度学习算法性能的重要基准任务。
随着大模型技术的兴起,人们开始探索如何将大模型应用于手写体数字识别,以提高识别精度和效率。然而,训练一个大型的卷积神经网络模型需要大量的计算资源和数据,这对于个人开发者来说是一个巨大的挑战。
为了降低大模型开发的门槛,本文将以 MNIST 手写体数字识别任务为例,介绍如何从零开始构建一个基于卷积神经网络的大模型,并通过微调技术提升模型性能。
1.2 研究现状
近年来,手写体数字识别领域取得了显著进展,涌现出许多优秀的深度学习模型,如 LeNet-5、AlexNet、VGG 等。这些模型在 MNIST 数据集上取得了超过 99% 的识别精度。
然而,这些模型通常需要大量的训练数据和计算资源,对于个人开发者来说难以实现。同时,随着大模型技术的兴起,人们开始探索如何将大模型应用于手写体数字识别,以提高识别精度和效率。
1.3 研究意义
本文旨在通过一个简单的例子,展示如何从零开始构建一个基于卷积神经网络的大模型,并通过微调技术提升模型性能。这将为个人开发者提供一个学习和实践大模型开发的入门教程,帮助他们更好地理解和应用大模型技术。