大语言模型(Large Language Models) - 原理与代码实例讲解
1. 背景介绍
1.1 问题的由来
近年来,随着互联网和移动设备的普及,人类积累了海量的文本数据。如何从这些海量数据中挖掘有价值的信息,成为了自然语言处理领域的一个重要课题。传统的自然语言处理方法,例如基于规则的方法和基于统计的方法,在处理大规模文本数据时,往往会遇到效率低、泛化能力差等问题。
为了解决这些问题,研究人员开始探索新的自然语言处理方法,其中最具代表性的就是大语言模型(Large Language Models, LLMs)。大语言模型是指利用深度学习技术,在海量文本数据上训练得到的具有数十亿甚至数千亿参数的神经网络模型。这些模型能够捕捉自然语言的复杂结构和语义信息,并在各种自然语言处理任务中取得了显著的成果。
1.2 研究现状
目前,大语言模型的研究已经取得了很大的进展,出现了许多著名的模型,例如:
- GPT-3 (Generative Pre-trained Transformer 3):由 OpenAI 开发,拥有 1750 亿个参数,能够生成高质量的文本、翻译语言、编写不同类型的创意内容,并以信息丰富的方式回答你的问题。
- BERT (Bidirectional Encoder Representations from Transformers):由