Anaconda安装及配置(CPU/GPU)pytorch深度学习环境(超详细!!!)

本文详细指导如何在Windows上安装和配置Anaconda,包括下载、安装、验证步骤,并针对CPU和GPU环境分别安装PyTorch,以及与PyCharm的集成。旨在帮助读者避免常见安装问题,快速搭建深度学习开发环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编程如画,我是panda!

这次给大家带来一期Anaconda安装及配置pytorch深度学习环境的教程,超级详细,点赞收藏加关注,以防走失~

文章目录

前言

一、Anaconda的下载与安装

1.Anacondad是什么?与python有什么关系

2.下载Anaconda

2.1. 进入Anaconda官网 

2.2. 安装Anaconda 

2.3. 验证Anaconda 

二、检查是否有Nvidia显卡

三、安装CPU环境的pytorch

1.创建虚拟环境

2.进入虚拟环境

3.删除虚拟环境

4.安装CPU环境的pytorch

4.1. 进入Pytorch官网

4.2. 安装Pytorch

4.3. 验证Pytorch

5.安装其他版本的Pytorch

​四、安装GPU环境的pytorch

1.创建虚拟环境

2.进入虚拟环境

3.删除虚拟环境

 4.安装GPU环境的pytorch

4.1. 确定自己显卡的算力

4.2. 确定CUDA runtime

4.3. 确定CUDA驱动版本

4.4. 进入Pytorch官网

4.5. 安装Pytorch

4.6. 验证Pytorch

5.安装其他版本的Pytorch

五、Anaconda与Pycharm 配置

总结


前言

深度学习越来越火啦,深入到各行各业,panda个人也对深度学习很感兴趣,再加上之前导师让我去配一下Pytorch深度学习环境,所以觉得有必要出一期教程。

当时在配这个东西的时候,踩了很多坑,配了好久,Anaconda删了又下,下了又删。。。太难受了,为了不让小伙伴们踩坑,我为大家准备了超级详细的教程!希望大家喜欢~

提示:在配好环境以后,推荐Pytorch与PyCharm或VSCode搭配使用效果更好,如果还没有安装好PyCharm或VSCode,panda之前出过教程,可根据教程一步一步安装。

传送门:

python安装及pycharm环境搭建汉化(保姆级教程)-CSDN博客

vscode安装+汉化+配置C/C++环境(保姆级教程!)-CSDN博客


一、Anaconda的下载与安装

1.Anacondad是什么?与python有什么关系

Anaconda是一个专注于数据科学和机器学习的开源发行版,内置了丰富的工具和库,包括Python解释器、NumPy、SciPy、Pandas、Scikit-learn、TensorFlow等,使用户能够轻松进行科学计算和数据分析。其强大的包管理器conda简化了软件包的安装和环境管理,同时提供了灵活的虚拟环境支持,使用户能够隔离和管理不同项目的依赖关系。Anaconda的综合性和易用性使其成为数据科学和机器学习领域的首选工具。

Anaconda可以看成是一个教学楼,教学楼里有很多教室,每个教室互不影响,但是都有Python,版本可以相同也可以不同,这就是多个python共存,然后每个教室里面可以有不同或相同的深度学习框架用来完成不同的任务,每个教室互不影响,每个教室就代表着每一个“环境”。

2.下载Anaconda

2.1. 进入Anaconda官网 

官网:Anaconda | The World’s Most Popular Data Science Platform

下载地址:Free Download | Anaconda

直接点击Download即可:

2.2. 安装Anaconda 

打开下载好的文件:

 点击next

点击I Agree:

下一步是指你要为谁安装Anaconda, 如果你的计算机只有你一个用户,那么这两个选哪个都无所谓,但是有多个用户的话,如果选下面的选项,会为所有用户均安装Anaconda。

这里建议不要安装在C盘,毕竟挺大的......(更改的路径要确保你的路径是全英文!!!)

 选择下列选项,然后下载:(也可以选择默认的)

 等待安装完成:

完成后点击next, 然后两个选项都不选:

2.3. 验证Anaconda 

打开Anaconda Navigator,如果有base环境说明你的Anaconda安装好了:

 

二、检查是否有Nvidia显卡

按住Ctrl+Shift+Esc调出任务管理器,找到性能,查看你的GPU,如果有NVIDIA说明你的显卡是英伟达显卡:

有英伟达显卡的话直接看GPU版本的教程,没有的话直接看CPU版本的教程

三、安装CPU环境的pytorch

1.创建虚拟环境

首先打开Anaconda的命令行:

创建虚拟环境命令格式:

conda create -n 环境名 python=版本号

比如我创建的存放cpu版本pytorch的conda为:

conda create -n cpupytorch python=3.9

大家可以根据自己的需要去下载,输入命令后点击回车,然后输入y,回车:

下载完成!

2.进入虚拟环境

输入conda activate 环境名:

前面的括号里面的东西代表你现在处于哪个虚拟环境。

3.删除虚拟环境

如果你发现你的环境下错了,想删除这个环境,可以使用这句话:

conda remove -n 环境名 --all

4.安装CPU环境的pytorch

4.1. 进入Pytorch官网

进入官网以后往下滑,找到命令:

直接复制命令

conda install pytorch torchvision torchaudio cpuonly -c pytorch

4.2. 安装Pytorch

打开anaconda命令行窗口,进入到你的虚拟环境中,输入命令:

然后输入y,等待下载完成:

如果你觉得下载速度慢可以使用清华的镜像源安装(要么从清华的镜像源下载要么就从官网下载,二者选一个就好):

清华镜像源:Index of /anaconda/cloud/pytorch/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

找到适合你的镜像,点进去:

然后复制网址: 

把命令改成: 

conda install pytorch torchvision torchaudio cpuonly -c 刚才复制的链接

然后输入命令等待下载完成。

4.3. 验证Pytorch

进入你的虚拟环境,输入conda list:

如果有Pytorch说明安装成功:

另一种方法:

在虚拟环境的命令行中输入python,然后输入import torch,等待导入完成,然后输入torch.cuda.is_available(),如果出现False,说明安装成功!

5.安装其他版本的Pytorch

如果你有安装其他版本Pytorch的需要,请继续往下看,如果没有,跳过即可。

进入官网,找到Get Started:

找到先前版本: 

 

选择你想下载的版本号,找到对应的命令下载即可:

四、安装GPU环境的pytorch

1.创建虚拟环境

首先打开Anaconda的命令行:

创建虚拟环境命令格式:

conda create -n 环境名 python=版本号

比如我创建的存放gpu版本pytorch的conda为:

conda create -n gpupytorch python=3.9

大家可以根据自己的需要去下载,输入命令后点击回车,然后输入y,回车:

下载完成!

2.进入虚拟环境

输入conda activate 环境名:

前面的括号里面的东西代表你现在处于哪个虚拟环境。

3.删除虚拟环境

如果你发现你的环境下错了,想删除这个环境,可以使用这句话:

conda remove -n 环境名 --all

 4.安装GPU环境的pytorch

4.1. 确定自己显卡的算力

进入网站:CUDA GPU - 计算能力 |NVIDIA 开发者

找到自己的显卡,例如:打开任务管理器:
 

确定显卡为英伟达GeForce系列的笔记本系列RTX4060(Laptop)

然年后进入网站找到对应版本:

查询到算力为8.9,也可以去这个网站查询:CUDA - Wikipedia 

4.2. 确定CUDA runtime

在这张表中,找到你的算力可以匹配到哪个SDK,比如我的是8.9,就适合11.8和12.0-12.3

这张表的出处:CUDA - Wikipedia 

打开网页后,直接按住Ctrl+F搜索GPUs supported就能看到。

4.3. 确定CUDA驱动版本

按住Win+r输入cmd打开命令行,输入nvidia-smi:

如果不显示此界面,请先更新显卡驱动,官网:官方驱动 | NVIDIA 

选择符合自己电脑配置的版本,然后安装即可:

4.4. 进入Pytorch官网

进入官网以后往下滑,找到命令:

下方的Compute Platform选取规则:

参考:23. GPU版本-GPU与CUDA准备工作_哔哩哔哩_bilibili或者根据我下面说的也行

在4.3查询到的CUDA驱动版本为12.1,那么4.2查询到的适用版本就要小于等于12.1,即适用于11.8和12.0-12.1。

所以我选取CUDA11.8版本(我的选取12.1也可以),每个人要根据自己的电脑配置不同选取不同的命令。 

直接复制命令

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

4.5. 安装Pytorch

打开anaconda命令行窗口,进入到你的虚拟环境中,输入命令:

然后输入y,等待下载完成:

如果你觉得下载速度慢可以使用清华的镜像源安装(要么从清华的镜像源下载要么就从官网下载,二者选一个就好):

清华镜像源:Index of /anaconda/cloud/pytorch/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

找到适合你的镜像,点进去:

然后复制网址: 

把命令改成: 

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c 刚才复制的链接

然后输入命令等待下载完成。

4.6. 验证Pytorch

进入你的虚拟环境,输入conda list:

如果有Pytorch说明安装成功:

另一种方法:

在虚拟环境的命令行中输入python,然后输入import torch,等待导入完成,然后输入torch.cuda.is_available(),如果出现True,说明安装成功!

5.安装其他版本的Pytorch

如果你有安装其他版本Pytorch的需要,请继续往下看,如果没有,跳过即可。

进入官网,找到Get Started:

找到先前版本: 

 

选择你想下载的版本号,找到对应的命令下载即可:

五、Anaconda与Pycharm 配置

前面我们已经将Anaconda安装好,并且已经进行了Pytorch深度学习环境搭建(CPU/GPU),但是我们需要一个编辑器能够帮我们写代码,进行代码管理。这里推荐Pycharm,Pycharm的安装之前出过教程,没有安装好的可以看一下我之前的博客。如果需要专业版或者安装不好寻求帮助,可以私聊我。

首先,打开Pycharm,新建项目:

这里需要注意的比较多:

  1. 名称随便取,位置的话不建议带中文路径,后续可能会出现问题
  2. 下方选择自定义环境
  3. 然后选择“Select existing”
  4. 类型选择Conda
  5. Path to conda 找到你的Anaconda的下载路径,然后找到condabin文件夹,选择的conda.bat文件
  6. 下方环境会出现你已经在conda中创建好的虚拟环境,默认是base虚拟环境

 然后点击创建即可。

总结

OK,至此,相信各位已经搭建起来了自己的Pytorch深度学习环境了,大家可以开启深度学习之旅了~如果你喜欢panda的教程,希望点赞收藏加关注哦!

后续预告:有些小伙伴没有NVIDIA的显卡,但是使用CPU又很慢,所以我会出一期GPU服务器的使用教程,并且跑通运行案例~

<think>首先,用户的问题是关于在使用Anaconda配置PyTorch环境时,能否通过pip安装包并支持GPU。具体问题是:“我想在使用Anaconda配置PyTorch环境时,能否通过pip安装包并支持GPU”。 用户提供了几个引用,这些引用是关于在Anaconda安装PyTorch GPU版本的指南。我需要参考这些引用来回答问题,但用户说“上述引用仅供参考,并不是用户真正的需求”,所以我应该基于这些引用和一般知识来回答。 关键点: - 用户想使用pip安装包,而不是conda。 - 包需要支持GPU。 从引用中: - 引用[1]:使用pip安装PyTorch GPU版本,命令是:`pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118` - 引用[2]:讨论安装AnacondaPyTorch GPU库,提到可能会遇到问题。 - 引用[3]:使用pip安装特定的.whl文件来安装PyTorch GPU版本。 - 引用[4]:关于在Anaconda Navigator中创建环境。 所以,是的,可以通过pip安装PyTorch并支持GPUPyTorch官方提供了pip安装选项,包括GPU版本。 回答结构: - 系统级指令要求使用中文回答。 - 行内数学表达式用$...$,独立公式用$$...$$。 - 生成相关问题。 - 回答要结构清晰,逐步解决问题。 - 引用段落末尾添加引用标识。 回答内容: 1. **确认可能性**:是的,可以通过pip安装PyTorch并支持GPU。 2. **步骤**:提供清晰的步骤。 - 创建Anaconda虚拟环境。 - 激活环境。 - 使用pip安装PyTorch GPU版本。 3. **命令示例**:基于引用[1],给出命令。 4. **验证安装**:如何检查GPU支持。 5. **注意事项**:确保CUDA版本兼容等。 生成相关问题: - 在末尾添加相关问题。 引用标识: - 当引用用户提供的引用时,在末尾添加[^n]。 最终回答框架: 1. 介绍:确认可以。 2. 步骤: a. 创建虚拟环境。 b. 激活环境。 c. 使用pip安装PyTorch GPU。 d. 验证安装。 3. 注意事项。 4. 相关问题。</think>### 在Anaconda配置PyTorch环境时通过pip安装GPU支持包 是的,在使用Anaconda配置PyTorch环境时,完全可以通过`pip`安装PyTorch包并支持GPU加速。PyTorch官方提供了针对不同CUDA版本的pip安装命令,确保GPU兼容性。以下是详细步骤和解释,帮助您安全可靠地实现这一目标。整个过程分为环境创建、安装、验证和注意事项四个部分,确保您能高效操作。 #### 步骤1: 创建并激活Anaconda虚拟环境 首先,在Anaconda中创建一个独立的Python虚拟环境,避免包冲突。假设您使用Python 3.8(兼容性好),环境名称为`pytorch_gpu`: - 打开Anaconda Prompt或终端。 - 运行命令创建环境: ```bash conda create -n pytorch_gpu python=3.8 ``` - 激活环境: ```bash conda activate pytorch_gpu ``` 此步骤确保所有后续安装都在隔离环境中进行,不影响系统Python[^4]。 #### 步骤2: 使用pip安装PyTorch GPU版本 在激活的环境中,通过pip安装PyTorch及其依赖包(如torchvision和torchaudio)。PyTorch官方提供预编译的GPU版本wheel文件,您需指定CUDA版本(如CUDA 11.8)的索引URL: - 运行pip安装命令: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 此命令会从PyTorch官方源下载并安装支持CUDA 11.8的GPU版本包。安装时间取决于网络速度,通常几分钟内完成[^1][^3]。 - **关键点**:`--index-url`参数指定了GPU版本的仓库,确保安装的包包含CUDA内核。PyTorch会自动检测NVIDIA GPU驱动,无需额外配置CUDA工具包(前提是系统已安装NVIDIA驱动)。 #### 步骤3: 验证GPU支持 安装完成后,在Python中测试PyTorch是否成功识别GPU: - 在Anaconda Prompt中启动Python解释器: ```bash python ``` - 输入以下代码检查GPU状态: ```python import torch print(torch.__version__) # 输出PyTorch版本 print(torch.cuda.is_available()) # 输出True表示GPU可用 print(torch.cuda.get_device_name(0)) # 输出GPU型号 ``` 如果输出类似以下内容,说明GPU支持已启用: ``` 2.0.1 True NVIDIA GeForce RTX 3080 ``` 这表明PyTorch已正确配置GPU加速[^1][^3]。 #### 注意事项 - **CUDA版本兼容性**:确保您的NVIDIA驱动支持所选CUDA版本(如命令中的`cu118`对应CUDA 11.8)。可通过`nvidia-smi`命令检查驱动版本。驱动版本应 ≥ CUDA版本要求(例如,CUDA 11.8需要驱动≥ v520.00)[^2]。 - **pip vs conda**:pip安装通常更灵活,但conda能自动处理依赖冲突。如果遇到包冲突问题,可尝试先安装基础包(如NumPy): ```bash pip install numpy ``` 再执行PyTorch安装命令[^1]。 - **虚拟环境优势**:在Anaconda环境中使用pip安装包不会污染全局环境,卸载也简单(`conda remove -n pytorch_gpu --all`)[^4]。 - **常见问题**:如果`torch.cuda.is_available()`返回False,请检查NVIDIA驱动更新或重新安装PyTorch(使用`pip uninstall torch`后再安装)。引用[2]提到,安装过程可能因系统差异遇到问题,建议参考PyTorch官方文档调整CUDA版本[^2]。 通过以上步骤,您可以在Anaconda环境中高效使用pip配置GPU加速的PyTorch,适用于深度学习训练等计算密集型任务。
评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值