深度学习(10)---Vision Transformer详解


一、简介

 1. Vision Transformer(ViT)是一种基于Transformer架构的深度学习模型,它将Transformer模型从自然语言处理(NLP)领域成功扩展到计算机视觉(CV)领域。

 2. Vision Transformer由Google Brain团队在2020年提出,该模型挑战了卷积神经网络(CNN)在视觉任务中的主导地位,证明了Transformer架构不仅在处理序列数据(如文本)方面非常有效,在处理图像数据时也能取得卓越性能。

 3. Vision Transformer的核心思想是将输入的图像视为一个序列化的输入,通过自注意力机制来处理图像中的像素关系。具体而言,ViT首先将输入图像划分为多个固定大小的图像块(Patches),然后对每个图像块进行线性映射(Flattening + Linear Projection),将其转换成一个向量。这些向量连同一个特殊的分类Token一起作为Transformer的输入序列。这样,图像就被转换成了一个序列数据,从而可以直接应用自注意力机制进行特征提取。

二、模型结构

2.1 整体架构

 ViT模型如下架构图所示,其中主要有三个部分组成:(1) Linear Projection of Flattened Patches(Embedding层,将子图映射为向量);(2) Transformer Encoder(编码层,对输入的信息进行计算学习);(3) MLP Head(用于分类的层结构)。

在这里插入图片描述

在这里插入图片描述

2.2 Linear Projection of Flattened Patches

 1. Linear Projection of Flattened Patches(平铺块的线性投影)是ViT模型架构中的一个重要组成部分。这个过程主要涉及到将输入的图像数据转换为Transformer模型能够处理的一维向量序列。

 2. 作用与目的:
 (1)图像数据转换:由于标准的Transformer模型接收的是一维的嵌入序列,而图像数据是三维的(高度H、宽度W、通道数C),因此需要通过线性投影将图像数据转换为Transformer能够处理的格式。
 (2)信息提取:通过平铺和线性投影,图像被划分为多个小块(Patches),每个小块被转换为一个一维向量,这些向量包含了图像中的局部信息。

 3. 具体步骤:
 (1)图像划分:将输入图像按照预定的尺寸(如16x16)划分为多个小块(Patches)。以ViT-B/16为例,如果输入图像的大小为224x224,则会被划分为(224/16)x(224/16)=196个小块。

 (2)平铺操作:将每个小块展平(Flatten)为一维向量。

 (3)线性投影:使用一个线性层(通常是卷积层)将每个展平后的小块映射到一个更高维的向量空间中。这个线性层的作用是将每个小块的特征进行抽象和整合,以便后续的自注意力机制能够处理。以ViT-B/16为例,线性投影层通常使用一个卷积核大小为16x16、步距为16、卷积核个数为768的卷积来实现。这个卷积操作会生成一个形状为[14, 14, 768]的特征图(由于步距为16,所以高度和宽度都减少了),然后将其展平为[196, 768]的形状,即196个长度为768的向量(后面都直接称为token)。

在这里插入图片描述

 (4)添加特殊Token和位置编码:在所有向量序列的开头添加一个特殊的class Token(分类Token),用于后续的图像分类任务。这个Token是一个可训练的参数,与其他向量具有相同的维度。给每个向量添加一个位置编码(Position Embedding),以保留它们在图像中的位置信息。位置编码通常是可学习的,并且与向量的维度相同。

 4. 图像分块代码块:

class PatchEmbed(nn
<think>好的,我现在需要解释Vision TransformerViT)中的MLP Head的作用和功能。用户已经提供了一些相关的引用内容,我需要结合这些信息来构建一个清晰且准确的回答。 首先,根据引用[2],MLP Head在训练ImageNet21K时由Linear层、tanh激活函数和另一个Linear层组成,而在迁移到其他数据集时可能仅使用一个Linear层。这说明MLP Head的结构可能因任务不同而有所变化,其主要作用可能涉及分类任务的最终输出处理。 接着,引用[3]提到,在输入Transformer Encoder之前需要加上class token和position embedding,这两者都是可训练的参数。而class token的嵌入向量通常会经过Transformer处理后被提取出来用于分类。因此,MLP Head可能负责将class token的输出转换为分类结果。 接下来,我需要将这些信息整合起来。MLP Head位于Transformer Encoder之后,接收class token对应的输出向量,并将其映射到目标类别的概率分布。这可能涉及多个全连接层和激活函数,具体结构取决于训练阶段和数据集。例如,在预训练时使用更复杂的结构,而在微调时简化。 同时,需要明确MLP Head在整个ViT流程中的位置和作用。ViT将图像分块、线性嵌入后,加上位置编码和class token,经过Transformer Encoder处理,最后提取class token的特征,通过MLP Head进行分类。因此,MLP Head是分类的关键组件,负责最终的决策。 还需要注意MLP Head与中间其他层的区别。例如,Transformer Encoder内部也有MLP层,但那是用于特征变换的,而MLP Head是最后的分类器,两者功能不同。 最后,确保回答结构清晰,分点说明作用、结构变化和应用场景,并引用提供的参考资料。同时生成相关问题,帮助用户进一步理解相关概念。</think>### Vision TransformerViT)中MLP Head的作用与功能解释 在Vision TransformerViT)中,**MLP Head**是模型末端的关键组件,其核心作用是将经过Transformer Encoder处理后的特征映射为最终的分类结果。以下是具体分析: #### 1. **功能定位** - **分类任务的核心输出层** MLP Head接收来自Transformer Encoder输出的`class token`对应的特征向量(该向量通过自注意力机制聚合了全局图像信息),并通过多层感知机(MLP)将其映射到目标类别的概率分布[^3][^2]。 例如,在ImageNet分类任务中,它将维度为$D$的`class token`向量(如$D=768$)转换为包含1000个类别的概率输出。 - **特征维度适配** Transformer Encoder输出的特征维度可能与目标类别数量不一致,MLP Head通过线性变换完成维度对齐。例如,从高维特征空间(如768维)映射到低维分类空间(如10分类任务)。 #### 2. **结构变化** - **预训练与微调阶段的差异** - 在**预训练阶段**(如ImageNet-21K数据集),MLP Head通常由`Linear + tanh激活函数 + Linear`组成,以增强非线性表达能力[^2]。 - 在**微调或迁移学习阶段**(如ImageNet-1K或自定义数据集),可能简化为单层线性变换(仅保留最后一个`Linear`层),以减少过拟合风险并提升计算效率。 - **数学表示示例** 假设输入特征为$\mathbf{z} \in \mathbb{R}^D$,则MLP Head的输出可表示为: $$ \mathbf{y} = \mathbf{W}_2 \cdot \tanh(\mathbf{W}_1 \cdot \mathbf{z} + \mathbf{b}_1) + \mathbf{b}_2 $$ 其中$\mathbf{W}_1, \mathbf{b}_1$和$\mathbf{W}_2, \mathbf{b}_2$为可训练参数。 #### 3. **与Transformer Encoder内部MLP层的区别** Transformer Encoder中每个注意力块后包含的MLP层(如两层全连接+GELU激活)主要用于**局部特征变换**,而MLP Head则是**全局分类决策层**,两者分工明确[^1]。 --- ### 流程图说明 ```plaintext 输入图像 → 分块嵌入 → [class token] + 位置编码 → Transformer Encoder → 提取class token特征 → MLP Head → 分类结果 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冒冒菜菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值