基于YOLOv11与PyQt实现深海鱼识别系统的设计与实现

往期精彩内容

基于YOLOv11的番茄成熟度实时检测系统设计与实现
用YOLOv11检测美国手语:挥动手腕的科技魔法
基于YOLOv11模型+PyQt的实时鸡行为检测系统研究
OpenCV与YOLO在人脸识别中的应用研究(论文+源码)
计算机视觉:农作物病虫害检测系统:基于YOLO和Tkinter的GUI应用研究
基于YOLO的香蕉成熟度检测系统
基于YOLOv5和PyQt实现车辆检测与识别系统

基于YOLOv11与PyQt实现深海鱼识别系统的设计与实现

摘要

深海鱼类的识别不仅对生态研究具有重要意义,还在智能监控、海洋环境保护等领域具有广泛的应用前景。传统的深海鱼类识别方法存在诸多局限性,如图像处理速度慢、识别精度低等问题,无法满足现代智能监控系统的需求。近年来,基于深度学习的目标检测算法在计算机视觉领域取得了显著进展,尤其是YOLO(You Only Look Once)系列模型,因其高效性和精确度,广泛应用于实时目标检测任务。本论文结合YOLOv11目标检测算法与PyQt框架,提出了一种基于深海鱼图像的实时识别系统。该系统能够准确识别13种不同的深海鱼类,并通过PyQt提供直观的图形用户界面(GUI),实现对识别结果的实时展示。实验结果表明,所设计的系统在深海鱼类识别精度和实时性方面表现良好,具有较强的实用价值和广泛的应用前景。

1. 引言

随着计算机视觉与人工智能技术的飞速发展,目标检测在各个领域的应用得到了广泛的关注。尤其是在生态监测、智能交通与环境保护等领域,目标检测技术发挥着越来越重要的作用。深海鱼类作为水下生态系统的一部分,其种类繁多且分布广泛,因此深海鱼类的自动识

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值