自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 机器学习——主成分分析 PCA简单

PCA(Principal Component Analysis)是一种常用的降维方法,通过找到数据中的主成分来减少特征的数量。PCA的过程包括数据预处理、计算协方差矩阵、特征值分解和数据投影等步骤。特征值分解可以得到特征值和特征向量,特征向量表示新的坐标系的方向,特征值表示特征向量的重要程度。可以更深入理解PCA原理:深入理解PCA的数学原理和几何意义,包括如何选择主成分、如何解释方差的保留率等。

2024-01-01 00:35:22 1042

原创 机器学习——支持向量机

使用SVM模型可以有效地对二分类问题进行建模和预测,在本例中,可以看到不同惩罚参数C下的SVM决策边界对数据集的分类效果。通过逐步调整C的取值,可以控制模型对训练样本的拟合程度和泛化能力。同时,可视化结果也直观地展示了SVM模型对数据集的分类效果。1.参数调优:这段代码中使用了三个不同的惩罚参数C值(1, 50, 100),可以进一步尝试其他C值,以找到最佳的模型性能。可以通过网格搜索或交叉验证等方法来确定最优的C值。这是可以提升的地方。

2023-12-18 20:38:09 1354 1

原创 机器学习——logistic回归原理及简单实现

本次实验基本实现了Logistic回归的基本步骤,实现了以下的进程去划分,在二维空间中清晰地展示了模型如何区分不同的类别。Sigmoid函数:这是逻辑回归中的核心部分,它将线性函数的输出转换为概率。损失函数:定义了模型预测与真实值之间的差距,我们的目标是通过优化算法最小化(在这个例子中是最大化对数似然)损失函数。梯度上升算法:这是一种优化算法,用于更新模型的权重以最大化损失函数。决策边界:在二维空间中清晰地展示了模型如何区分不同的类别。这是本次实验所学习得到的收获。但是我本次实际使用时可能需要对。

2023-12-04 18:37:57 1981

原创 机器学习—朴素贝叶斯算法

朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布。但是朴素贝叶斯却是生成方法,该算法原理简单,也易于实现。

2023-11-20 21:49:11 178 1

原创 机器学习——决策树原理以及简单实现

1.首先学习了解到了决策树是一种直观、易于理解和解释的机器学习算法。它通过构建一棵树形结构来选择最佳的决策路径,每个节点代表一个特征,每个边代表一个决策规则。可以直观地了解模型是如何做出预测的。2.延续了前几次实验的基本步骤将数据集划分为训练集和测试集,并使用训练集对决策树模型进行训练,然后在测试集上进行预测。通过计算准确率去评估模型的性能。这能更好更深入的理解机器学习这门课程的知识。3.在以上代码实现测试时遇到了可视化决策树的结构图的问题,最开始想通过使函数将生成的图像保存为PDF格式文件,命名为。

2023-11-06 12:20:40 422

原创 分类模型评估(PR,ROC曲线)可视化实现

ROC曲线和PR(Precision - Recall)曲线皆为类别不平衡问题中常用的评估方法,二者既有相同也有不同点。混淆矩阵与PR、ROC曲线之间存在紧密的联系,它们都是用于衡量分类模型性能的重要工具。所以在学习分类模型评估(PR,ROC曲线)可视化实现之前首先要学习混淆矩阵。

2023-10-23 20:52:08 509 1

原创 K近邻(KNN)算法(算法原理+简单的实现)

根据选择的距离度量(如曼哈顿距离或欧氏距离),可计算测试实例与训练集中的每个实例点的距离,根据k值选择k个最近邻点,最后根据分类决策规则将测试实例分类。因为在k近邻算法中,预测结果是通过与目标数据点距离最近的k个邻居的标签值来确定的。如下图,根据欧氏距离,选择k=4个离测试实例最近的训练实例(红圈处),再根据多数表决的分类决策规则,即这4个实例多数属于“-类”,可推断测试实例为“-类”。平均法:在回归问题中,KNN算法采用平均法来预测待回归样本的输出值,即选择K个邻居的输出值的平均值作为待回归样本的输出。

2023-10-09 20:42:08 6317 1

原创 机器学习相关环境的配置和搭建(有关Anaconda和Vscode中OpenCV,PyTorch的下载配置)

点击环境变量,将前面强调的Anaconda安装路径中添加 anaconda的安装目录的Scripts文件夹,到path中如下。接着修改你想要的的安装路径,与你的环境变量相关,所以需要慎重选择,并确定你清楚你的安装路径在哪。最后便是路径的配置,建议选择第二个选项自己配置,这样对以后的学习以及联系才能更明白。并激活虚拟环境 Windows: conda activate test,如下。并保存,然后在测试。下载完成后按如下步骤安装,较为简单,看如下图照做即可。在命令行输入如下代码,并观察是否满足右侧条件。

2023-09-25 21:39:47 165 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除