
LangGraph
文章平均质量分 95
999
炼丹上岸
我很懒,还没有添加简介
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangGraph 多智能体系统:从概念到实战的权威指南
文章摘要:多智能体架构与LangGraph应用 本文探讨了从单一智能体转向多智能体架构的必要性和优势。单一智能体在面对复杂任务时容易产生认知过载,而多智能体系统通过模块化分工显著提升性能、可控性和可维护性。文章详细介绍了LangGraph框架的核心概念:状态管理(State)、节点(Nodes)和边(Edges),以及实现智能体间通信的Command对象机制。此外,还分析了三种典型协作架构模式(网络、层级和自定义)的特点,重点比较了主管模式与蜂群模式在中心化协调和去中心化协作方面的差异。LangGraph通原创 2025-09-03 17:12:26 · 957 阅读 · 0 评论 -
LangGraph 时间旅行深度解析:掌握状态、持久化与人机协同工作流
文章摘要 LangGraph 通过状态化架构(StateGraph)实现了智能体系统的核心功能,其核心在于状态(State)的持久化管理。状态通过 TypedDict 定义结构,并结合 Reducer 函数实现安全更新。节点作为状态修改器,边则控制执行流程。LangGraph 的持久化模型依赖 Checkpointer 自动记录状态快照,并通过线程(Threads)隔离不同会话的历史记录。每个检查点(Checkpoint)保存完整状态信息,支持时间旅行和审计。开发者可根据需求选择内存、SQLite 或 Po原创 2025-09-03 16:10:00 · 963 阅读 · 0 评论 -
精通人机协同:使用 LangGraph 构建交互式智能体的综合指南
构建人机协同智能体的关键实践 本文探讨了在自主智能体中引入人类监督的必要性,并详细介绍了基于LangGraph框架的实现方法。主要内容包括: 人类监督的重要性:随着AI能力增强,关键领域如金融、医疗和企业IT必须保留人类判断环节,以确保安全性和可靠性。 LangGraph的核心机制: 以状态化设计为基础,通过检查点实现持久化 提供动态中断(interrupt())和静态中断两种机制 遵循"重执行原则"实现暂停与恢复 实践应用:通过构建需要人类审批的搜索智能体示例,展示了如何将理论转化为实原创 2025-09-03 14:40:09 · 776 阅读 · 0 评论 -
精通 LangGraph 中的工具使用:构建有状态、支持工具的 AI 代理的权威指南
本文介绍了在LangGraph框架中构建智能体系统的基础知识,重点阐述了工具的定义、连接和应用方法。第一部分深入解析了工具的核心概念,包括如何通过@tool装饰器和Pydantic模型定义工具,以及.bind_tools()方法如何将工具绑定到语言模型。第二部分提供了构建工具调用代理的完整教程,详细说明了将代理设计为状态机的方法,以及如何通过"思考"节点和"行动"节点实现代理的认知循环和工具调用功能。文章强调了一个关键设计原则:语言模型仅负责推理生成工具调用请求,而实原创 2025-09-03 13:58:01 · 621 阅读 · 0 评论 -
精通状态智能体:LangGraph 内存机制综合指南(长短期记忆)
LangGraph 是一个为大型语言模型(LLM)提供双轨制内存管理框架的工具,通过短期记忆(Checkpointer)和长期记忆(Store)实现智能对话状态维护。短期记忆通过 thread_id 追踪单次对话的上下文,确保连贯性;长期记忆则利用 user_id 和 namespace 存储跨对话的持久化数据。开发时可使用 InMemorySaver 快速验证,生产环境则需部署数据库支持的 Checkpointer(如 PostgreSQL)。这种架构设计分离了会话状态与持久知识,使 AI 应用既能流畅对原创 2025-09-02 17:52:17 · 625 阅读 · 0 评论 -
构建弹性 AI 代理:深入解析 LangGraph 中的持久化与持久执行
摘要: LangGraph 是一个专为复杂 AI 代理设计的底层编排框架,支持有状态、长时运行的任务处理。其核心通过持久化(保存状态)和持久执行(恢复执行)实现生产级代理能力。框架内置检查点工具(Checkpointer)、线程隔离(Threads)和状态快照(Checkpoints)机制,确保多用户场景下的上下文隔离与容错。开发者可通过简单 API 启用记忆功能,并利用“时间旅行”回放历史状态,支持调试与人机协同。生产环境推荐使用 Postgres 等可靠后端替代内存存储,以保障数据持久性。LangGra原创 2025-09-02 15:04:12 · 1124 阅读 · 0 评论 -
LangGraph 深度解析(三):构建可观测、交互式 AI 智能体的流式架构权威指南
LangGraph流式处理通过实时状态更新机制,将传统"黑盒"式AI交互转变为透明可观测的"玻璃盒"模式。其核心采用状态快照与增量更新机制,在执行过程中实时输出状态变化,带来三大优势:1)提升用户体验,通过实时反馈消除等待焦虑;2)增强系统可观测性,为开发者提供精细调试能力;3)建立用户信任,通过透明化决策过程实现人机协作。文章通过代码示例详细解析了stream()方法的工作原理,展示了如何通过状态快照跟踪智能体执行过程,为构建高性能、可交互的AI系统奠定基础。原创 2025-09-02 10:55:04 · 1106 阅读 · 0 评论 -
解构 LangGraph:深入解析 Pregel 运行时及其理论基础
LangGraph计算核心解析:从BSP模型到Pregel架构 本文系统剖析了LangGraph框架的理论基础与实现机制。首先引入批量同步并行(BSP)模型作为理论基石,详细解构其超步(Superstep)三阶段:并发本地计算、全局通信和栅栏同步,阐明其规避竞态条件的设计哲学。随后聚焦Google Pregel系统,揭示其"顶点中心计算"范式如何将BSP理论转化为大规模图处理实践,重点分析合并器与聚合器等优化机制。最终深入LangGraph运行时实现,建立Pregel概念与LangGra原创 2025-09-01 10:42:32 · 715 阅读 · 0 评论 -
Pregel 与 LangGraph:从分布式图计算到现代 AI 智能体的架构演进与 API 深度解析
本文探讨了Pregel并行图计算范式的核心原理及其在LangGraph中的创新应用。Pregel通过"像顶点一样思考"的编程模型和BSP执行机制,解决了MapReduce迭代计算效率低下的问题。LangGraph将这一思想转译为AI智能体编排框架,将顶点映射为行动者,消息转化为通道,超步转变为计划-执行-更新循环。这种设计使LangGraph能够支持状态化、多步推理的AI工作流,突破了传统线性链或DAG模型的限制。文章着重分析了两个系统在概念映射上的异同,特别是LangGraph如何将静原创 2025-08-30 19:46:09 · 928 阅读 · 0 评论 -
LangGraph 深度解析(二):掌握 LangGraph 函数式 API 的状态化 AI 工作流
摘要 本文介绍了LangGraph的函数式API及其构建应用的新方法。第一部分阐述了函数式API的核心理念,对比了函数式API与图API的特性差异,并详细解析了核心装饰器@entrypoint和@task的功能。第二部分通过实践示例展示了如何构建函数式工作流,包括处理输入、并行执行任务等技术要点。文章强调函数式API通过提供更符合Python习惯的编程方式,降低了构建复杂状态化应用的门槛,同时保留了LangGraph强大的运行时能力。文中包含的代码示例演示了从简单任务到并行处理的实际应用场景。原创 2025-08-30 19:16:33 · 902 阅读 · 0 评论 -
LangGraph 深度解析(一):从核心原理到生产级 Agent 工作流的构建
LangGraph:下一代智能体架构的核心引擎 摘要:LangGraph突破了传统线性链式结构的局限,构建了以状态为中心的智能体架构。其四大核心支柱包括:1)状态中心设计,通过类型化状态定义实现可靠数据流;2)显式控制流,支持复杂分支和循环结构;3)生产就绪性,内置重试和缓存机制;4)内省可视化,便于调试和优化。LangGraph采用函数式编程思想,通过不可变状态更新和Reducer机制实现安全并发,为构建复杂AI工作流提供了声明式的解决方案。这种架构使开发者能够设计出更强大、可靠的自主智能体系统,支持从简原创 2025-08-30 18:25:52 · 819 阅读 · 0 评论