复试翻译训练

  1. The central processing unit (CPU) is the heart of the computer systems. Among other things, its configuration determines whether a computer is fast or slow in relation to other computers. The CPU is the most complex computer system component, responsible for directing most of the computer system activities based on the instructions provided. As one computer generation has evolved to the next, the physical size of the CPU has often become smaller and smaller, while its speed and capacity have increased tremendously. Indeed, these changes have resulted in microcomputers that are small enough to fit on your desk or your lap.中央处理器端元是计算机的核心。在其他方面,他的配置决定了是否一个计算机与其他计算机相比速度是快还是慢。cpu是最复杂的计算机系统部分,负责基于提供的指令指导大部分计算机系统活动。随着一代又一代计算机的演化,cpu的物理尺寸往往变得越来越小,而其速度和容量已经有了很大的提升。事实上,这些变化已经导致了微型计算机的出现,他们足够小,可以放在你的桌子上或膝盖上。
  2. Drilling and completion in the petroleum industry refer to the processes of creating a wellbore in the earth’s subsurface to extract hydrocarbons, such as oil and natural gas, from underground reservoirs. These processes involve a series of complex operations and techniques aimed at safely and efficiently accessing and exploiting these valuable resources. Drilling typically begins with the preparation of the drilling site, followed by the mobilization of drilling rigs and equipment. The drilling process itself involves rotating a drill bit attached to the bottom of a drill string, which is a series of interconnected pipes, and applying downward force to penetrate the earth’s layers.石油工业中的钻井和完井是指在地球的表面创造一个井眼以提取石油和天然气等氢化物的过程。这些过程包括一系列复杂的运行和技术,为了能够安全并且高效的获得和开采这些珍贵的资源。钻井通常是从准备钻井场地开始,然后是钻机和设备的调动。钻井过程本身包括旋转连接在钻杆底部的钻头,钻柱是一系列相互连接的管道,并且施加向下的力去穿透地球表层。
  3. This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with shifted windows.这篇论文提出一个一种新的视觉转换器,叫做ST,这能够作为计算机视觉的一个通用的主干。这两个领域的差距,例如视觉实体的规模上的不同和图像中的高分辨率分辨率与文本中的单词相比,这就给从语言到视觉的转换带来了挑战。为了解决这些问题,我们提出了一种分层变换器,其表示使用移位窗口计算的。
  4. In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains.However, a major limitation of such applications is their demand for massive amounts of training data. A critical present objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context.最近几年深度强化学习系统已经在很多具有挑战性的任务领域取得了超人的表现。不过,这种应用主要的一个限制是对据大规模的训练数据的要求。因此,目前的一个关键的目标是开发出深度增强学习的方法,这个方法能够快速适应新的任务。在最近的工作中我们引入了一个新奇的方法去应对这个挑战,我们称之为深度元强化学习。之前的工作已经表明循环网络能够在完全监督的环境下支持元学习。
  5. Recent research in artificial intelligence and machine learning has largely emphasized general-purpose learning and ever-larger training sets and more and more compute. In contrast, I propose a hybrid, knowledge-driven, reasoning-based approach, centered around cognitive models, that could provide the substrate for a richer, more robust AI than is currently possible.最近在人工智能和机器 学习方便的研究很大程度上强调了通用学习和更大的训练集和更多的计算。相比之下,我提出了一种混合的、知识驱动的、基于逻辑的方法,集中在认知模型上,它能够提供一个比目前的更丰富、更健壮的ai。
  6. This is a survey of neural network applications in the real-world scenario. It provides a taxonomy of artificial neural networks (ANNs) and furnishes the reader with knowledge of current and emerging trends in ANN applications research and area of focus for researchers. Additionally, the study presents ANN application challenges, contributions, compare performances and critiques methods. The study covers many applications of ANN techniques in various disciplines which include computing, science, engineering, medicine, environmental, agriculture, mining, technology, climate, business, arts, and nanotechnology, etc.这是一篇关于神经网络在现实世界应用的调查。他提供了人工神经网络的分类,并且为读者提供了在人工神经网络应用中的最近和正在出现的趋势。另外,该项研究还提出了人工神经网络的挑战、贡献,性能比较和方法评论。研究概括了很多人工神经网络技术在各个学科的应用,包括计算、科学、工程、医学、环境、农业、采矿、技术、气候、商业、艺术和纳米技术等。
  7. As the AI program AlphaGo recently defeated one of the top human Go players, Chinese react differently toward the historic duel between human and artificial intelligence. At first, concerns have already been raised on why the human player did not come from China, where the game was invented more than 2,500 years ago. Then, after a dramatic 4:1 win over Lee Se-Dol, glib Chinese web users have raised a challenge to the AlphaGo program, demanding jokingly that it learn another amusement with Chinese characteristics—mahjong. Scientists say compared with Go, mahjong has far fewer permutations for AI calculation, but involves chance and many other factors.随着ai应用阿尔法围棋打败人类世界冠军后,中国人对这义历史性的人机大战有不同的反应。首先,有人提出质疑,为什么人类棋手不是来自中国,中国是在2500多年前就发明了围棋。其次,在阿尔法围棋以4:1打败李世石后,好事的中国网友向阿尔法狗发起挑战,开玩笑的说应该让阿尔法狗学习有中国特色的娱乐活动---麻将。科学家说相比于阿尔法狗,麻将对于ai计算来说有更少的排列,但是包括着运气和很多其他因素。
  8. Federated Learning is a new Machine Learning (ML) approach. It allows us to train our machine learning models using data that is distributed across multiple devices without centralizing the data in a single location. Moreover, this federated learning has gained popularity in recent years. Its popularity came from its ability to address the privacy concerns associated with traditional Machine Learning approaches. In such a way, federated learning has recently revolutionized how we collect, analyze, and utilize data, making it one of the most exciting and promising fields in AI today.联邦学习是一个新的机器学习方法。它允许我们使用分布在多个设备上的数据对我们的机器学习模型进行训练,而不需要将数据存储在一个位置。此外,联邦学习已经在近几年流行,他的流行是因为它能够解决与传动机器学习方法相关的隐私问题。以这样一种方法,联邦学习最近已经彻底改变了我们怎么样收集、分析、和利用数据,在如今使其成为最令人兴奋和期待的ai中的领域之一。
  9. Artificial intelligence is a branch of computer science that seeks to understand the nature of intelligence and produce a new type of intelligent machine that can react in a manner similar to human intelligence. Research in this field includes robotics, speech recognition, image recognition, natural language processing, and expert systems. Since the birth of artificial intelligence, the theory and technology are increasingly mature, and the application field is also expanding. It can be imagined that the future scientific and technological products brought by artificial intelligence will be the "container" of human wisdom. Artificial intelligence can simulate the information process of human consciousness and thinking. Artificial intelligence is not human intelligence, but it can think like a human and possibly exceed human intelligence.人工智能是计算机科学的一个分支,旨在理解智能的本质并且产生一种新形势的智慧的机器,使其可以在类似于人类智能的方式做出反应。该领域摆阔机器人技术,语音识别,图像识别,自然语言处理和专家系统。自从人工智能识别诞生以来,原理和技术正在变得成熟,并且应用领域也在扩展。可以想象到,未来由人工智能带来的科学技术产品正日益成为人类智慧的容器。人工智能可以模拟人类意识和思维信息处理过程。人工智能不是人类智能,但是它可以像人类一样的意识和思考,并且可能超过人类。
  10. Pattern recognition, also known as pattern classification, can be divided into supervised classification and unsupervised classification from the perspective of the nature of the problem and the method of solving the problem. The main difference between the two is whether the categories of the experimental samples are known in advance. Generally speaking, supervised classification often needs to provide a large number of samples of known categories, but in practical problems, there is some difficulty in this, so it becomes very necessary to study unsupervised classification.模式识别,也叫模式分类,从问题的特点和解决问题的方法的角度可以分成监督分类和无监督分类。这两者主要的不同是是否已知。一般来说,监督分类经常需要提供大量的已知类别的样本,但是在实际问题中,这里有一定的困难,因此去学习无监督分类变得十分有必要。
  11. Natural Language Processing (NLP) is an important direction in the field of computer science and artificial intelligence. It studies various theories and methods that can realize effective communication between human and computer in natural language. Natural language processing is a science integrating linguistics, computer science and mathematics. Therefore, the study of this field will involve natural language, that is, the language that people use every day, so it has a close connection with the study of linguistics, but there are important differences. Natural language processing is not the study of natural language in general, but the development of computer systems, especially software systems, which can effectively realize natural language communication.自然语言处理是计算机科学和人工智能领域的一个重要方向,他研究各种能够实现人和机器之间的自然语言的原理和方法。自然语言处理是一种融合了语言学、计算机科学和数学的科学。因此,这个领域的研究将会包括自然语言,即人们日常使用的语言,所以他和语言学的研究有一个紧密的研究,但是也有重要的区别。自然语言处理不是一般意义上的自然语言研究,但是计算机系统的发展,尤其是软件系统,可以有效地实现自然语言的交流。
  12. However, due to various mining problems and technical problems, China relies heavily on oil imports. In order to alleviate market pressure and reduce oil imports, China has continuously strengthened its oil exploration, while heavy oil accounts for 25% of the oil geological resources (about 20 billion tons) and 8% of the combined oil and gas geological resources. It is part of oil and gas exploration and development that cannot be ignored. China's technical systems for heavy-oil production are actively progressing and improving. I summarize the technology and practical application examples of heavy oil exploitation in China over the years, and analyze the advantages and disadvantages of various heavy oil mining technologies, and put forward some suggestions for the development status of China.但是,由于各种各样的开采问题和技术问题,中国严重依赖油气进口。为了去缓解市场压力和减少油气进口,中国持续的增强它的油气开采,但是重油占石油地质资源的25%(大约200亿)和油气综合地质资源的8%,这是不容忽视的一部分。中国的重油生成技术正在积极进步和完善。我总结了中国近年来关于重油开采的例子的多年来技术和实践应用,并且分析了各种重油开采技术和实际应用案例,并分析了各种重油开采技术的优缺点,并对中国的现状提出了一些建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值