- 博客(1452)
- 收藏
- 关注

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录
【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】
2024-10-12 13:19:28
7890
32

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!
2023-11-14 20:54:20
5656
24

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程
2023-11-02 09:19:27
6455
18

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战
深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;
2023-09-22 21:05:56
5520
25
原创 如何用自己的数据集训练YOLOv13(NEU-DET为案列展开)
如何用自己的数据集训练YOLOv13,在NEU-DET任务中不使用预训练模型,YOLOv13原始mAP50为0.742;使用预训练模型,YOLOv13原始mAP50为0.762
2025-06-26 09:13:30
556
原创 《YOLOv13:基于超图增强自适应视觉感知的实时目标检测》原理、代码详解
提出了 YOLOv13,一款卓越的实时端到端目标检测器。我们的 YOLOv13 模型利用自适应超图来探索潜在的高阶关联,并基于高阶关联的有效信息聚合与分配,实现准确且鲁棒的检测。
2025-06-26 09:00:58
577
原创 YOLO11道路坑洼检测提升 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM
MSAM 加入backbone | mAP50从原始的0.822提升至 0.848
2025-06-17 19:04:43
365
原创 Yolov8-pose关键点检测:卷积创新结合频域 | 一种名为频率动态卷积(FDConv)的创新方法,CVPR2025
我们引入了一种名为频率动态卷积(FDConv)的创新方法,通过在傅里叶域中学习固定参数预算来缓解这些问题。
2025-06-16 09:28:47
123
原创 YOLOv10首发优化:卷积创新结合频域 | 一种名为频率动态卷积(FDConv)的创新方法,CVPR2025
引入了一种名为频率动态卷积(FDConv)的创新方法,通过在傅里叶域中学习固定参数预算来缓解这些问题
2025-06-16 09:26:17
66
原创 YOLO11道路坑洼检测提升 | DCNv4结合C3k2,轻量级高效涨点
DCNv4 结合C3k2| mAP50从原始的0.822提升至 0.83 ,GFLOPs从原始的7.1降低至6.1
2025-06-13 09:22:19
981
原创 基于YOLO11的多场景道路坑洼检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的道路坑洼检测,阐述了整个数据制作和训练可视化过程
2025-06-13 09:11:25
760
原创 YOLO论文分享(6):FBRT-YOLO:更快且更优的实时空中图像检测方法
这些贡献点体现了 FBRT-YOLO 在实时空中图像检测领域的创新性和实用性,为该领域的研究和发展提供了新的思路和方法。
2025-06-11 08:49:45
1036
1
原创 YOLO11首发优化:卷积创新结合频域 | 一种名为频率动态卷积(FDConv)的创新方法,CVPR2025
引入了一种名为频率动态卷积(FDConv)的创新方法,通过在傅里叶域中学习固定参数预算来缓解这些问题
2025-06-10 10:04:23
264
原创 YOLOv8首发优化:卷积创新结合频域 | 一种名为频率动态卷积(FDConv)的创新方法,CVPR2025
我们引入了一种名为频率动态卷积(FDConv)的创新方法,通过在傅里叶域中学习固定参数预算来缓解这些问题
2025-06-10 10:04:02
212
原创 一种基于YOLO11的高精度船舶(ship-obb)检测(原创自研)
一种基于YOLO11的高精度船舶(ship-obb)检测算法,mAP50从原始的0.828提升至0.877
2025-06-09 08:42:48
1101
1
原创 YOLO11船舶(ship-obb)检测 | 小目标到大目标一网打尽GPFN实现暴力涨点
小目标到大目标一网打尽GPFN | mAP50从原始的0.828提升至0.847,适用于obb其他既有小目标又有大目标的任务
2025-06-07 14:15:13
424
1
原创 YOLO11船舶(ship-obb)检测 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM,实现暴力涨点
MSAM 加入backbone | mAP50从原始的0.828提升至0.862,适用于obb其他既有小目标又有大目标的任务
2025-06-07 08:59:25
664
原创 基于YOLO11的船舶(ship-obb)检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的船舶(ship-obb)检测,阐述了整个数据制作和训练可视化过程
2025-06-05 13:41:55
934
1
原创 基于YOLO11的DroneVehicle-OBB检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的DroneVehicle-OBB检测,阐述了整个数据制作和训练可视化过程
2025-06-05 08:58:36
650
原创 Yolov8-pose关键点检测:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
在夜间或黑暗条件下进行摄影通常会受到噪点、光线不足和因环境昏暗以及 commonly(通常)使用长时间曝光而产生的模糊问题的困扰。
2025-06-03 13:36:19
257
1
原创 基于YOLO11的高速路车辆检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的高速路车辆检测,阐述了整个数据制作和训练可视化过程
2025-06-03 10:31:40
1021
原创 RT-DETR算法优化:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
问题点:在夜间或黑暗条件下进行摄影通常会受到噪点、光线不足和因环境昏暗以及 commonly(通常)使用长时间曝光而产生的模糊问题的困扰。
2025-05-29 08:56:48
45
原创 RT-DETR算法优化:注意力魔改 | 一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE),2025年5月最新发表
首次结合坐标注意力和内卷积,DCAFE 模块运用平均池化和最大池化方法实现并行坐标注意力
2025-05-29 08:48:45
306
原创 YOLOv12首发优化:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
问题点:在夜间或黑暗条件下进行摄影通常会受到噪点、光线不足和因环境昏暗以及 commonly(通常)使用长时间曝光而产生的模糊问题的困扰。
2025-05-27 09:02:55
243
原创 YOLOv10首发优化:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
在夜间或黑暗条件下进行摄影通常会受到噪点、光线不足和因环境昏暗以及 commonly(通常)使用长时间曝光而产生的模糊问题的困扰。
2025-05-27 08:48:11
246
原创 一种基于YOLO11的高精度叶片病害检测算法(原创自研)
一种基于YOLO11的高精度病害检测算法,mAP50从原始的0.528提升至 0.558
2025-05-26 15:00:42
1406
原创 YOLO11叶片病害检测提升 | 具有切片操作的SimAM注意力结合卷积,助力病害检测
Conv_SWS加入backbone | mAP50从原始的0.528提升至 0.538,该方法使用其他任务的叶片病害检测任务
2025-05-26 14:56:25
891
原创 YOLOv8首发优化:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
2025-05-26 10:10:37
257
原创 YOLO11优化:编解码Metaformer 结构 ,解决受到噪点、光线不足和因环境昏暗等问题 | CVPR2025 DarkIR
问题点:在夜间或黑暗条件下进行摄影通常会受到噪点、光线不足和因环境昏暗以及 commonly(通常)使用长时间曝光而产生的模糊问题的困扰。
2025-05-26 10:04:12
312
原创 YOLO11叶片病害检测提升 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM
MSAM 加入backbone | mAP50从原始的0.528提升至 0.542,该方法使用其他任务的叶片病害检测任务
2025-05-23 15:22:04
420
1
原创 YOLO11叶片病害检测提升 | 多尺度提取能力,一种多维联合注意力模块 | 2025年4月最新发表
MDJA加入backbone | mAP50从原始的0.528提升至 0.536,该方法使用其他任务的叶片病害检测任务
2025-05-23 15:19:21
472
原创 Yolov8-pose关键点检测:注意力魔改 | 一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE),2025年5月最新发表
一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE),2025年5月最新发表
2025-05-23 10:55:15
69
2
原创 YOLOv12首发优化:注意力魔改 | 一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE),2025年5月最新发表
首次结合坐标注意力和内卷积,DCAFE 模块运用平均池化和最大池化方法实现并行坐标注意力
2025-05-23 10:52:30
207
原创 基于YOLO11的2025中国软件杯大学生软件设计大赛赛道目标检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的中国软件杯大学生软件设计大赛检测,阐述了整个数据制作和训练可视化过程
2025-05-22 16:53:49
753
windows下成功编译dcnv4环境
2024-06-18
基于YOLOv8的足球赛环境下足球目标检测系统
2024-06-18
基于YOLOV8的注意力机制源代码获取,开箱即用
2023-08-19
铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho
2023-06-09
红外小目标飞机检测数据集
2023-05-07
基于yolov5的二维码识别
2023-04-30
基于分割的工业划痕质检数据集
2023-04-30
yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文
2023-04-28
三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张
2023-04-28
玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张
2023-04-28
二维码数据集,数据集大小1085张
2023-04-28
pyqt+yolov5+pcb缺陷检测
2023-04-01
yolov5 tensorrt c++部署
2023-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人