YOLOv8训练出的PT直接转为NCNN

在转化时,需要注意ultralytics的版本,使用以下代码查看,我这里使用的是最稳定的8.2.0

import ultralytics
print(ultralytics.__version__)  # 应 ≥8.1.0

直接使用以下代码实现PT转NCNN:

from ultralytics import YOLO

# 加载模型时指定兼容性参数(避免自动下载新架构)
model = YOLO("best.pt", task="detect")  # 显式指定任务类型

# 导出前安装必要依赖
model.export(format="ncnn", opset=12, simplify=True, imgsz=640)

运行完会在pt同级目录下出现一个名为best_ncnn_model文件夹,里面包含需要的.bin和.param结尾的文件。

使用以下在命令对图片进行检测,修改model路径和source图片地址,查看是否转对:

yolo predict task=detect model=runs/detect/yolov8_custom/weights/best_ncnn_model imgsz=640 source=E:\OneDrive\Desktop\毕业设计\检测图片\taozi410.jpg

<think>好的,用户想在树莓派上部署和运行YOLOv5模型。首先,我需要整理已有的信息。根据提供的引用,有几个关键点需要注意: 首先,引用[1]提到通过MobaXterm连接树莓派,需要处于同一局域网。这说明用户可能需要远程连接树莓派进行操作。然后引用[3]是关于训练YOLOv8模型的代码,但用户需要的是部署YOLOv5,所以可能需要调整训练代码或者使用现有的YOLOv5模型。引用[4]提到了性能优化,比如使用Vulkan加速、调整分辨率和量化模型,这些对树莓派这种资源有限的设备很重要。 接下来,我需要考虑树莓派的硬件限制。树莓派5的性能虽然有所提升,但运行YOLOv5这样的模型仍然可能面临计算资源不足的问题。因此,模型换和优化是关键步骤。用户可能需要将PyTorch模型换为ONNX,再转为ncnn格式,因为ncnn在嵌入式设备上效率较高,如引用[4]所示。 然后,部署步骤应包括环境配置,比如安装必要的库,可能还需要编译ncnn并启用Vulkan支持。同时,摄像头实时视频流的处理可能需要用到OpenCV和Flask框架,如引用[2]中的示例,但需要确认是否适用于YOLOv5。 可能遇到的问题包括依赖项安装冲突、模型换错误、推理速度过慢等。需要建议用户逐步测试每个环节,比如先确保模型换正确,再测试推理脚本,最后优化性能。 最后,性能优化部分需要详细说明如何调整分辨率和量化模型,以及如何利用ncnn的Vulkan支持来加速推理。此外,用户可能需要修改代码以适应树莓派的摄像头模块,比如使用Picamera库或者USB摄像头的OpenCV接口。 总结步骤应该是:准备模型、换格式、部署到树莓派、安装依赖、编写推理代码、优化性能。同时,确保用户了解每个步骤可能现的问题和解决方法,比如使用现有的预训练模型,或者如何调整参数以适应树莓派的硬件限制。</think>### 树莓派部署YOLOv5模型的步骤 #### 1. **环境准备** - **连接树莓派** 使用MobaXterm或SSH工具连接树莓派(需在同一局域网内),确保网络稳定[^1]。 - **安装依赖库** 安装Python、OpenCV、PyTorch(ARM兼容版本)等基础环境: ```bash sudo apt-get update sudo apt-get install python3-opencv libopenblas-dev pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/raspbianbullseye ``` #### 2. **模型换与优化** - **导YOLOv5模型为ONNX格式** 在训练服务器上使用以下命令导模型: ```python import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) torch.onnx.export(model, torch.randn(1, 3, 640, 640), 'yolov5s.onnx') ``` - **换为ncnn格式** 使用`onnx2ncnn`工具将ONNX模型换为ncnn格式[^4]: ```bash ./onnx2ncnn yolov5s.onnx yolov5s.param yolov5s.bin ``` #### 3. **部署与推理** - **编译ncnn(开启Vulkan支持)** 在树莓派上编译ncnn以支持硬件加速: ```bash git clone https://github.com/Tencent/ncnn.git cd ncnn && mkdir build && cd build cmake -DNCNN_VULKAN=ON .. make -j4 && sudo make install ``` - **编写推理代码** 参考ncnn示例代码加载模型并执行推理: ```cpp #include <ncnn/net.h> int main() { ncnn::Net net; net.load_param("yolov5s.param"); net.load_model("yolov5s.bin"); // 图像预处理、推理、后处理逻辑 return 0; } ``` #### 4. **实时视频流处理** - **使用OpenCV捕获摄像头数据** 结合OpenCV读取摄像头帧并输入模型: ```python import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() # 执行推理并绘制检测结果 ``` - **Flask框架传输视频流** 参考引用[2],通过Flask将处理后的视频流推送到Web端: ```python from flask import Flask, Response app = Flask(__name__) @app.route('/video_feed') def video_feed(): return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') ``` #### 5. **性能优化[^4]** - **启用Vulkan加速** 确保Vulkan驱动已安装,并在代码中启用: ```cpp ncnn::create_gpu_instance(); ncnn::VkCompute cmd(ncnn::get_gpu_device()); ``` - **降低输入分辨率** 将模型输入从$640 \times 640$调整为$320 \times 320$。 - **INT8量化** 使用ncnn的量化工具压缩模型: ```bash ./ncnn2int8 yolov5s.param yolov5s.bin yolov5s-int8.param yolov5s-int8.bin ``` #### 6. **测试与验证** - **静态图像测试** 加载`test.jpg`验证模型输类别和置信度[^3]。 - **实时性能监控** 使用`top`命令观察CPU/GPU利用率,调整线程数: ```cpp net.opt.num_threads = 2; // 根据树莓派核心数设置 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孤寡呜哇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值