小白零基础学数学建模系列-Day17-深入理解支持向量机(SVM)

小白零基础学数学建模系列-Day17-深入理解支持向量机(SVM)

CSDN/B站/知乎:川川菜鸟

书籍推荐:https://item.m.jd.com/product/10099450547669.html

我的微信(接数学建模咨询,机器学习项目,数模学术论文转化服务):hxgsrubxjogxeeag

1. 引言

SVM 是一种监督学习模型,主要用于分类问题。其目标是在特征空间中找到一个能够最大化分类间隔的超平面。超平面将数据点分为不同的类别,SVM 通过找到离超平面最近的支持向量数据点,确保分类的最佳性能。在介绍支持向量机之前,我们需要先了解一些关键的基础概念。

SVM 的核心概念包括:

线性可分:SVM 尝试在特征空间找到一个超平面,线性划分数据。
最大化分类间隔:SVM 寻求找到能够最大化分类间隔的超平面。
非线性数据处理:通过核函数,SVM 能够有效处理非线性分类问题。


2. 基础概念

2.1. 分类与回归问题
SVM 通常用于分类问题,但它也可以通过变种(如 SVR)用于回归问题。

分类问题:目标是将数据划分为不同的类别。例如,给定一组特征,预测一封邮件是否为垃圾邮件。
回归问题:目标是预测一个连续值。例如,基于历史数据预测房价。

2.2. 线性可分与非线性可分
SVM 的核心在于找到一个能够分离不同类别的超平面,因此了解数据是否线性可分很重要。通过核函数将数据映射到更高维度,使其在新的空间中线性可分。

线性可分:可以用一条直线或一个平面将数据点清晰地分成不同的类别。
非线性可分:类别之间无法用直线或平面直接分开。SVM

2.3. 模型评估与选择
在应用 SVM 时,理解如何评估模型的性能和选择最佳模型非常重要。常用的模型评估指标有:

准确率:分类模型的准确率,表示正确分类的比例。
精确率、召回率和 F1 值:用于评估分类器的精确度和覆盖率,尤其在数据不平衡时特别重要。
交叉验证:通过将数据集划分为训练集和验证集,确保模型的泛化能力。

2.4. 数据标准化
在使用 SVM 之前,数据标准化是一个非常重要的步骤。因为 SVM 依赖于计算数据点之间的距离,特征尺度不同会影响模型的性能。常见的标准化方法有:

标准化:将数据转换为均值为 0,方差为 1 的标准正态分布。
归一化:将数据缩放到 [0, 1] 或 [-1, 1] 的范围。


3. SVM 模型的基本概念

3.1 支持向量
定义:支持向量就是那些“关键的”数据点。你可以把它们想象成站在分界线(分类边界)附近的“哨兵”,这些哨兵决定了分界线应该放在哪里。远离分界线的数据点并不会影响结果,真正起作用的就是这些靠近边界的数据点,它们帮助SVM找到最合适的分界线。

原理:SVM 在训练时仅依赖于这些支持向量来确定超平面的位置和方向。这与其他分类算法不同,SVM 不需要用到所有的数据点来进行训练,而是仅依赖于这些最具代表性的数据点。

3.2 分类超平面
定义:分类超平面就是用来分开不同类别的“线”或者“面”。如果你有一群苹果和橙子,SVM会试图画一条线把苹果和橙子分开,这条线就是分类超平面。在更高维的空间里,它可能不再是简单的线,而是一个“平面”甚至“超平面”,但本质上它就是那个把两类东西分开的边界。

公式表达
对于二维数据,超平面可以表示为线性方程:
w⋅x+b=0 w \cdot x + b = 0 wx+b=0

w 是权重向量,x 是特征向量,b 是偏置项。SVM 通过求解该方程,确定分类边界。

最大间隔原理:SVM 寻找的是分类间隔最大的超平面,即在分类问题中,超平面与最近数据点之间的距离尽可能大。分类间隔越大,模型的泛化能力越好,这有助于避免过拟合。

3.3 核函数
定义:核函数就像是一个转换器。当你的数据不能用简单的线来分开时,核函数会把这些数据从当前的空间“变换”到一个更高维的空间。在这个新的空间里,数据可以用一条直线或一个平面轻松分开。这个转换过程是SVM应对复杂数据的核心。

常见核函数

线性核:适用于线性可分问题。
多项式核:用于特征之间有非线性关系的情况,适合复杂数据。
径向基函数(RBF)核:最常用的核函数之一,适合处理大多数非线性问题。它通过计算两个点之间的距离来判断是否属于同一类别。
Sigmoid核:类似于神经网络中的激活函数,在某些特定问题中也会使用。

公式表达
对于两点 x1和 x2 ,常见核函数的表达式如下:

线性核:
K(1,2)=C1C2 K(1, 2) = C_1 C_2 K(1,2)=C1C2

多项式核:
K(1,2)=(x1⋅x2+1)d K(1, 2) = (x_1 \cdot x_2 + 1)^{d} K(1,2)=(x1x2+1)d

其中,d 为多项式的阶数。

径向基核(RBF):
K(x1,x2)=exp⁡(−γ∥x1−x2∥2) K(x_1,x_ 2) = \exp(-\gamma \|x_1 - x_2\|^2) K(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值