前言:
在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。
一、算法介绍
Q-Learning是一种基于值函数的强化学习算法,其目标是学习一个最优的行动价值函数(Q函数),从而指导智能体在不同状态下选择最优行动。Q-Learning属于离线策略学习方法,不依赖于策略的形式,因此具有较强的灵活性和普适性。
Q-Learning的基本概念:
- 状态(State, s s s):环境在某一时刻的具体情况。
- 动作(Action, a a a):智能体在某一状态下可以采取的行为。
- 奖励(Reward, r r r):智能体执行动作后环境给予的反馈。
- 策略(Policy, π \pi π):智能体选择动作的规则。
- Q函数( Q ( s , a ) Q(s,a) Q(s,a)):在状态 s s s下采取动作 a a a所能获得的预期累积奖励。
Q-Learning通过不断更新Q函数,逐步逼近最优Q函数,从而找到最优策略。
二、算法原理
Q-Learning的核心在于更新Q函数,具体更新公式如下:
Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + 1 + γ max a Q ( s t + 1 , a ) − Q ( s t , a t ) ] Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right] Q(st,at)←Q(st,at)+α[rt+1+γamax