强化学习之Q-learning算法

前言:
在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。


一、算法介绍

Q-Learning是一种基于值函数的强化学习算法,其目标是学习一个最优的行动价值函数(Q函数),从而指导智能体在不同状态下选择最优行动。Q-Learning属于离线策略学习方法,不依赖于策略的形式,因此具有较强的灵活性和普适性。

Q-Learning的基本概念:

  • 状态(State, s s s:环境在某一时刻的具体情况。
  • 动作(Action, a a a:智能体在某一状态下可以采取的行为。
  • 奖励(Reward, r r r:智能体执行动作后环境给予的反馈。
  • 策略(Policy, π \pi π:智能体选择动作的规则。
  • Q函数( Q ( s , a ) Q(s,a) Q(s,a):在状态 s s s下采取动作 a a a所能获得的预期累积奖励。

Q-Learning通过不断更新Q函数,逐步逼近最优Q函数,从而找到最优策略。

二、算法原理

Q-Learning的核心在于更新Q函数,具体更新公式如下:

Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + 1 + γ max ⁡ a Q ( s t + 1 , a ) − Q ( s t , a t ) ] Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right] Q(st,at)Q(st,at)+α[rt+1+γamax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抱抱宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值