自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 (八)PMSM驱动控制学习---无感控制之滑膜观测器

滑模控制是变结构控制系统的一种控制策略。这种控制策略与常规控制的根本区别在于控制的不连续性,即一种使系统结构随时间变化的开关特性。这种特性可以使系统在一定条件下沿规定的状态轨迹作小幅、高频率的上下运动,这就是所谓的“滑动模态”。这种滑动模态是可以设计的,并且与系统的参数和扰动无关。因此,处于滑动模态的系统具有很好的鲁棒性。

2025-04-05 21:47:41 5724 10

原创 (七)PMSM驱动控制学习---SVPWM及算法实现

SVPWM控制策略是依据变流器空间电压(电流)矢量切换来控制变流器的一种新颖思路和控制策略,其主要思想在于抛弃原有的SPWM算法,采用逆变器空间电压矢量的切换以获得准圆形旋转磁场,从而在不高的开关频率条件下,使得交流电机获得较SPWM算法更好的控制性能。SVPWM算法实际上是对应于交流电机中的三相电压源逆变器功率器件的一种特殊的开关触发顺序和脉宽大小的组合,这种开关触发顺序和组合将在定子线圈中产生三相互差120°电角度、失真较小的正弦波电流波形。

2025-03-21 20:08:12 6104 16

原创 (十一)深度学习---生成式深度学习

本文简要介绍了文本生成技术,重点阐述了Seq2Seq模型和Transformer架构在自然语言处理中的应用,以及图像生成领域的发展现状。文章分为三部分:第一部分概述文本生成基本概念;第二部分详细分析Seq2Seq模型的编码器-解码器结构,并探讨Transformer的自注意力机制;第三部分简要介绍图像生成技术。全文系统梳理了生成式人工智能在文本和图像领域的关键技术框架。

2025-06-17 10:28:01 280 3

原创 (十)深度学习---时间序列数据处理

本文概述了语音识别的关键技术,主要包括三方面内容:时间序列数据处理方法、音频特征提取及建模技术,以及语音识别的基本概念。文章系统梳理了语音信号处理流程,从时序数据预处理到特征工程,再到识别模型构建,为读者提供了语音识别领域的整体框架和技术要点。

2025-06-10 13:30:47 179 2

原创 (九)深度学习---自然语言处理基础

本文总结了机器学习主要算法分类及应用场景,包括决策树、神经网络等方法适用于分类、回归和聚类问题。重点介绍了文本数据处理方法,并通过神经网络实现情感分析案例。详细讲解了循环神经网络(RNN)原理及其在Keras框架下的实现方案,为自然语言处理任务提供技术参考。文中内容涵盖从传统机器学习到深度学习的多种算法和实现路径。

2025-05-28 15:29:15 428

原创 (十)PMSM驱动控制学习---无感控制之高阶滑膜观测器

本文介绍了永磁同步电机无感控制中的高阶滑模观测器策略,相较于传统滑模观测器,该方案避免了因符号函数引起的高频切换分量和低通滤波器导致的相位延迟问题。文章详细探讨了高阶状态变量、永磁同步电机数学模型、高阶滑模观测器设计、反电动势提取以及PLL角度速度提取等关键技术,并通过Simulink仿真验证了该策略的有效性。这一方法为永磁同步电机的无感控制提供了新的解决方案,具有较高的实用价值。

2025-05-25 17:59:49 1273 6

原创 (八)深度学习---计算机视觉基础

本文概述了机器学习中的主要问题类型及其对应的算法。分类问题、回归问题和聚类问题分别适用于不同的场景,如决策树、线性回归和K-means等。神经网络、逻辑回归和岭回归等算法则用于处理更复杂的问题。深度学习、集成学习和Lasso回归等高级技术也被提及。此外,文章还介绍了图像数字化表示及建模基础,以及卷积神经网络(CNN)的基本原理和实现方法,包括基于Keras的CNN应用和在小数据集上的应用。这些内容为理解和应用机器学习提供了全面的指导。

2025-05-21 10:57:27 796 6

原创 (七)深度学习---神经网络原理与实现

本文概述了机器学习中的主要问题类型及其对应的算法。分类问题、回归问题和聚类问题分别适用于决策树、线性回归和K-means等算法。神经网络作为一种强大的工具,能够处理各种复杂问题,并支持深度学习、集成学习等高级技术。文章还详细介绍了神经网络的原理、训练方法,以及如何利用Keras实现神经网络,并监控和可视化训练过程。这些内容为理解和应用神经网络提供了全面的指导。

2025-05-13 10:33:07 302 8

原创 (九)PMSM驱动控制学习---分流电阻采样及重构

在电机控制当中,无论是我们的控制或者电机工作情况的检测,都十分依赖于电机三相电流的值, 所以相电流采样再在FOC控制中是一个特别关键的环节。 在前几篇中我们介绍了逆变电路的相关内容,所以在此基础上我们接着说道电流采样。目前应用较多的相电流采样方式是分流电阻采样,包括单电阻、双电阻以及三电阻采样法。其中单电阻采样的成本最低,但实现难度较为复杂,性能相对较差,本文中,我们着重介绍使用多且较为简单,性能较好的双电阻和三电阻采样。并介绍stm32上用于采样的ADC外设的基础配置。逆变电路相关文章链接:

2025-05-07 14:26:35 1757 13

原创 (六)机器学习---聚类与K-means

​​聚类算法的核心是相似度的计算。根据相似度计算方法的不同,可归类为基于距离、基于密度、基于层次、基于网格、基于模型等多种聚类方法。

2025-04-25 11:15:45 685 8

原创 (五)机器学习---决策树和随机森林

在分类问题中还有一个常用算法:就是决策树。本文将会对决策树和随机森林进行介绍。

2025-04-15 11:49:00 1273 6

原创 (四)机器学习---逻辑回归及其Python实现

 逻辑回归是一种监督学习算法。通过对有标记的样本数据进行学习,获得一个二分类决策函数,用来预测未知数据的类别。

2025-04-11 11:03:09 717 3

原创 (三)机器学习---线性回归及其Python实现

在处理大量参数时,传统的数学解法存在计算量过大的问题。为了解决这一难题,研究人员提出了梯度下降法作为更为通用的参数学习方法。这种方法通过不断迭代优化,逐步接近最优解——即损失函数的极小值。以类似摇床的图形为例,该过程涉及选择初始参数组合(如欧米伽),并根据其计算出相应的损失函数值;随后调整参数使其损失函数值降低最多,从而找到最佳参数组合。

2025-04-03 23:37:45 4789

原创 (二)机器学习---常见任务及算法概述

人工智能一个分支和实现方式,研究计算机怎样模拟或实现人类的学习行为以获取新的知识或技能,重新组织已有的知识结构来改善计算机系统自身的性能。

2025-03-31 11:40:21 1213 2

原创 (六)PMSM驱动控制学习---逆变电路基础与SPWM

冲量等效定理:冲量(变量对时间的积分)相等而形状不同的窄脉冲作用在具有惯性的环节时,其效果基本相同  把图中的正弦波分成N份,就可以把正弦波看成由N个彼此相连的脉冲序列所组成的波形。(因为需要的是窄脉冲,所以这个N越大约好)这些脉冲宽度都相等,但幅值不等。所以根据冲量等效定理 ,我们选用等幅值而不等宽的矩形脉冲代替,使其对应的整体面积相等,如上图。 矩形脉冲就是我们的PWM波形,而宽度是按正弦规律变化的。⭐ PWM 波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样

2025-03-16 16:40:30 5378

原创 (一)机器学习---Python基础语法

Python是一种高级、解释型、面向对象的编程语言,凭借其简洁的语法和强大的生态,成为初学者和技术大牛的首选。函数用 def关键字声明,用return关键字返回值,可以返回多个值。2. 参数与返回值支持默认参数、可变参数3.异常处理使用try...except可处理程序可能发生的错误和异常。

2025-03-13 11:30:32 637 1

原创 (五)PMSM驱动控制学习---dq轴(直、交轴)电流理解

对上一篇文章进行补充目录一.dq轴二.id iq通俗的理解三.id iq理论上理解四.id iq在PMSM上理解五.表贴式PMSM电流控制策略六.总结表贴式PMSM的dq轴电流控制核心在于:基速以下:id=0,仅通过 iq​ 控制转矩,简单高效。高速区:负 id 弱磁,扩展转速范围。而我们现阶段暂时分享的是id=0控制策略的情况.

2025-03-07 14:20:15 2136 4

原创 (四)PMSM驱动控制学习---FOC整体框架及原理

(Field Oriented Control)直译即磁场定向控制,又称为磁场矢量控制(VC,Vector Control)通过精确地控制磁场大小与方向,使得电机的运动转矩平稳、噪声小、效率高,并且具有高速的动态响应在我们前边的文章里,解释了直流无刷电机BLDC的驱动原理,其中就用到了六步换向,那它和咱FOC有什么区别呢控制方式低速平稳性效率噪音动态响应六步换相❌抖动明显60%大慢FOC✅丝般顺滑90%+极小毫秒级六步换相方案。

2025-03-07 13:20:23 5345 2

原创 (三)PMSM驱动控制学习(基础概念)---Clarke变换与Park变换

在电机矢量控制(FOC)中,Clarke变换和Park变换是实现磁场定向控制的核心数学工具。它们的作用是将三相交流信号转换为旋转坐标系下的直流量,从而简化控制器的设计。所以要学习FOC,充分理解这两个坐标变换是必要的。

2025-02-21 10:56:37 980 1

原创 (二)PMSM驱动控制学习(基础概念)———磁链

磁链(Magnetic Flux Linkage)是电磁学中的重要概念,用于描述磁场与电路之间的相互作用。磁链是指通过一个闭合回路的磁通量与该回路匝数的乘积,表示磁场与电路之间的耦合程度。其数学表达式为:Ψ=N⋅Φ其中:Ψ 为磁链(单位:韦伯,Wb);N 为线圈的匝数;Φ 为通过单匝线圈的磁通量(单位:韦伯,Wb)。

2025-02-17 13:57:40 1568

原创 (一)PMSM驱动控制学习(基础概念)---表贴式PMSM和内置式PMSM

相等,对于相同的电流变化 ΔI ,产生的磁链变化 Δψ 也相等。表贴式PMSM:由于Ld和Lq相等,控制策略相对简单,通常使用标准的矢量控制方法。内置式PMSM:由于Ld和Lq不相等,可以采用更复杂的控制策略,如。( ψpm ),另一部分是由电流产生的电枢磁链( ψar )。在表贴式PMSM中,磁链由两部分构成:一部分是由永磁体产生的。对于相同的电流变化,d轴和q轴上产生的磁链变化也大致相等。,即: L=ψ/I 是磁链,是电流ψ是磁链,I是电流。在稳态运行时,忽略电枢磁链的动态变化,只考虑。

2025-02-14 14:44:40 1688

原创 (三)BLDC驱动控制---无感控制之反电动势检测控制

无感就是没有位置传感器也能实现对无刷电机的驱动无感驱动由于没有位置传感器,所以体积很小,并且只有UVW三根线,这就是其与有感驱动电机最大的优势和区别了。

2025-02-14 14:37:36 2598 3

原创 (二)BLDC驱动控制---有感控制之霍尔传感器

根据上一篇文章我们说到,可以通过六步换向来使直流无刷电机旋转起来,但是要想准确控制电机,我们还面临了两个问题:1.如何实现三相极性的切换?2.如何确定当前转子的位置?今天我们就来分享一下这两个问题的解决方法。

2025-02-08 15:43:42 1180 2

原创 (一)BLDC直流无刷电机介绍及驱动原理

直流无刷电机(BLDC) 是一种通过电子控制器改变定子绕组的电流方向,产生旋转磁场,驱动转子转动的电机高效节能:能量转换效率高,发热少。寿命长:无机械磨损部件,维护需求低。低噪音:运行平稳,噪音小。免维护:电子换向减少维护工作。BLDC与BDC的最大结构区别是:无刷没有电刷以及换向器,且转子与定子反过来整体电机分为转子和定子,具体结构如下表:转子磁铁无刷电子的重要组成部分。无刷电机绝大部分性能参数都与其相关;转轴转子的直接受力部分;轴承是电机运转顺畅的保证;

2025-02-08 13:01:35 3050 6

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除