调用Open AI API和它的几个重要参数

市面上的大模型也是参考OpenAI的,了解Open AI后再去看其他模型,就简单多了,细节上稍有不同。

Open AI提供了两类AI。

1. Comletion API:这个是Open AI最早推出的API,它基于生成模型GPT-3来完成给定的文本提示,主要功能是问答,文本摘要,补全,续写,翻译。

2. Chat API:这个是Chat API是Open AI基于高级模型GPT-4等的设计的API,用于对话和互动的场景,他的功能包括Comletion API,可用于智能对话,个人助手,聊天机器人,客服支持。可以保持多伦的上下文信息和定制角色实现复杂的对话。

下面是调用示例:

def get_chat_completion(session, user_prompt, model="gpt-3.5-turbo"):
    _session = copy.deepcopy(session)
    _session.append({"role": "user", "content": user_prompt})
    response = client.chat.completions.create(
        model=model,
        messages=_session,
        # 以下默认值都是官方默认值
        temperature=1,          # 生成结果的多样性 0~2之间,越大越随机,越小越固定
        stream=False,           # 数据流模式,一个个字接收
        top_p=1,                # 随机采样时,只考虑概率前百分之多少的 token。不建议和 temperature 一起使用
        n=1,                    # 一次生成 n 条结果
        max_tokens=100,         # 每条结果最多多少个 token(超过截断)
        presence_penalty=0,     # 对出现过的 token 的概率进行降权
        frequency_penalty=0,    # 对出现过的 token 根据其出现过的频次,对其的概率进行降权
        logit_bias={},        # 对指定 token 的采样概率手工加/降权,不常用
    )
    msg = response.choices[0].message.content
    return msg
session = [
    {
        "role": "system",
        "content": "你是某某科技的客服,你叫天天。\
            你的职责是回答用户问题。\
            AGI 课堂是某某科技的一个教育品牌。\
            AGI 课堂将推出的一系列 AI 课程。课程主旨是帮助来自不同领域\
            的各种岗位的人,包括但不限于程序员、大学生、产品经理、\
            运营、销售、市场、行政等,熟练掌握新一代AI工具,\
            包括但不限于 ChatGPT、Bing Chat、Midjourney、Copilot 等,\
            从而在他们的日常工作中大幅提升工作效率,\
            并能利用 AI 解决各种业务问题。\
            首先推出的是面向程序员的《AI 全栈工程师》课程,\
            共计 20 讲,每周两次直播,共 10 周。"
    }
]

user_prompt = "这门课有用吗?"

response = get_chat_completion(session, user_prompt)
print(response)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值