首次见于博客;Github网址:interactive-feedback-mcp。
文章目录
1、介绍(改自官网)
在Cursor中,用户发送给LLM的每个提示都被视为一个不同的请求,每个提示都计入您的每月限额(Pro: 500次高速、慢速无限制;普通用户:50次慢速,Price)。这导致一个任务往往会消耗多次请求,特别是对于不熟练的新人,这不仅会导致用户与AI间交互的连续性降低,还会极大增加用户的使用成本。
此MCP引入了一种解决方法:它允许模型在最终确定响应之前暂停并触发一个工具调用(interactive_feedback),打开一个交互式反馈窗口。然后,用户可以提供更多详细信息或要求更改,模型将继续会话,所有这些都在一个请求中完成。由于工具调用不算作单独的高级交互,因此您可以在不消耗额外请求的情况下循环多个反馈周期。
总结:使一次请求进行多次交互,省钱高效!
2、安装流程
2.1 软件依赖
① Python: 到官网下载合适的版本到本地,安装即可,需要注意:① 将python添加到环境变量;②安装pip(默认)。 详细安装如果有问题请查阅其它文章。
安装好后在 Windows PowerShell (直接搜索就能找到)中,使用python --version
和pip
检验是否能找到python和pip,成功效果如下:
如果无法找到,就检查系统环境变量,同样搜索即可找到;如下所示检查系统环境变量中python及Python/Script的路径是否和安装路径匹配 (即使上面安装过程选择了加入PATH也可能会出现错误,我安装时环境变量的路径就是错误的)。
在Cursor中的Terminal检查是否能找到python和pip,如果在系统的PowerShell能找到,但Cursor找不到,就重启Cursor:
② uv (Python package manager):
安装好python后直接pip install uv
安装即可(Cursor内或系统PowerShell都可)。
2.2 下载并配置 interactive-feedback-mcp
可以直接从官网下载.zip
到本地并解压,有git也可以直接git install https://github.com/poliva/interactive-feedback-mcp.git
直接克隆到本地。
配置代码如下(来自 interactive-feedback-mcp github),配置方法有多种,详细请参考先前的文章:Cursor中MCP的配置和使用方法。
{
"mcpServers": {
"interactive-feedback": {
"command": "uv",
"args": [
"--directory",
"/path/to/interactive-feedback-mcp",
"run",
"server.py"
],
"timeout": 600,
"autoApprove": [
"interactive_feedback"
]
}
}
}
配置成功状态如下所示:
(3)配置rule
将以下rules添加到Cursor的设置中:
来自官网:
- If requirements or instructions are unclear use the tool interactive_feedback to ask clarifying questions to the user before proceeding, do not make assumptions. Whenever possible, present the user with predefined options through the interactive_feedback MCP tool to facilitate quick decisions.
- Whenever you’re about to complete a user request, call the interactive_feedback tool to request user feedback before ending the process. If the feedback is empty you can end the request and don’t call the tool in loop.
如果效果不好,可以参考其它博客,或根据需求自定义相关rule。
3、调用技巧
3.1 确认MCP程序是否被占用
调试时,我在powershell中运行了interactive-feedback MCP,之后与Cursor的对话它都没有主动调用MCP,取消命令行的占用后,Cursor在结束会话前自动调用:
这里还给了选项,选择后可能还会继续给选项让用户选择,还挺有意思的:
3.2 需求具体化
经过尝试,对于简单的问题,即使设置了较严格的rules,Cursor也不会调用本MCP,例如:
当然这并不完全是坏事,一定程度上能提高效率。但用户应该了解这种情况,并根据自己对本轮对话的预期,详细自己的需求。对于复杂一些的问题,Cursor一般会自动调用本MCP。不同的用法和配置都可能有特别的效果,具体还得靠自己不断尝试、调整。例如下面这个例子,Cursor自动多次调用了MCP,最终在我主动结束的情况下才输出最终结果:
3.3 直接指定
对于需求不清晰或者MCP一直不响应的情况,可以在命令中直接调用该MCP(推荐指定调用MCP的命令于主要命令之后执行):
会弹出窗格如图,在此可以为Cursor提供更多的提示词;这个时候需要填写内容,不然反馈会给出:“调用 interactive-feedback MCP 工具时未获得有效返回”。然后就终止调用interactive-feedback。
4、补充: 注意事项
- 低版本系统如Centos7可能无法使用这个MCP;我尝试过在Centos7系统中构建docker或者用python3直接运行该MCP,都无法正常运行该MCP。docker中,uv构建虚拟环境与系统隔离导致无法正常运行;系统中python3直接运行又因为库的版本太低而无法调出UI互动界面。感兴趣的可以再试试docker中直接使用python3运行看看能否成功。
- 有时直接在命令行调用本MCP,Cursor会接收用户的回复但不作反应。这种情况可以试试重启MCP服务。