第一阶段:基础筑基(第1-7天)
第1-3天:AI大模型认知与开发环境配置
-
核心概念学习(每日2小时)
-
理解Transformer架构与注意力机制
-
掌握预训练-微调范式差异
-
学习大模型在NLP/CV领域的应用场景
-
-
开发环境搭建(每日1小时)
-
安装Python 3.8+、CUDA 11.7
-
配置PyTorch/TensorFlow框架
-
部署Hugging Face Transformers库
-
第4-7天:核心组件实践
-
模型量化技术(每日3小时)
-
对比量化/剪枝/蒸馏的优劣势
-
实践AWQ量化方案解决outlier问题
-
运行LLM.int8()推理加速实验
-
-
基础模型调用(每日2小时)
-
使用BERT完成文本分类任务
-
实现GPT-2的文本生成
-
部署Hugging Face Pipeline
-
第二阶段:核心技术突破(第8-18天)
第8-12天:高效微调技术
-
微调方法实践(每日4小时)
-
使用LoRA微调ChatGLM模型
-
实现P-Tuning v2参数优化
-
医疗数据领域适配实战
-
-
提示工程精要(每日1小时)
-
Chain-of-Thought提示设计
-
多轮对话系统构建
-
第13-18天:企业级应用开发
-
项目开发实战(每日4小时)
-
基于LangChain构建知识库问答系统
-
开发电商虚拟试衣AI应用
-
实现SD多模态文生图程序
-
-
性能调优(每日1小时)
-
模型剪枝实战(移除20%参数)
-
RLHF奖励模型部署
-
第三阶段:高阶实战(第19-28天)
第19-23天:前沿模型解析
-
开源模型深度应用(每日4小时)
-
精读LLaMA2论文并部署中文版
-
复现Alpaca训练过程
-
GLM-130B多卡推理实践
-
-
论文带读训练营(每日1小时)
-
解析《Attention is All You Need》
-
精读PaLM技术报告
-
第24-28天:企业项目实战
三套完整项目闭环开发(每日5小时)
-
聊天机器人系统开发(Flask+React+LLaMA)
-
智能对话系统实现(包含意图识别模块)
-
大模型API服务化部署(Docker+K8s)
第四阶段:知识整合(第29-30天)
知识体系构建
-
整理技术笔记与代码库(GitHub归档)
-
构建个人作品集:
-
技术博客(至少3篇实战解析)
-
项目Demo视频展示
-
-
制定持续学习计划:
-
每月精读2篇顶会论文
-
参与Kaggle大模型竞赛
-
每日学习模板(高效执行建议)
时间段 |
内容安排 |
产出要求 |
---|---|---|
8:00-10:00 |
理论学习(论文/课程) |
思维导图笔记 |
10:30-12:00 |
代码实践 |
GitHub提交记录 |
14:00-16:00 |
项目开发 |
功能模块完成 |
16:30-18:00 |
调试优化 |
性能提升报告 |
20:00-21:00 |
次日计划 |
任务清单制定 |
学习资源包
-
必读论文:
-
LLaMA: Open and Efficient Foundation Language Models
-
LoRA: Low-Rank Adaptation of Large Language Models
-
-
工具集:
-
模型部署:vLLM, Text Generation Inference
-
可视化:Weights & Biases, TensorBoard
-
-
实战数据集:
-
医疗对话数据集:MedDialog
-
中文指令数据集:COIG
-
结语:成为大模型时代的领跑者
通过这30天的150小时高强度训练,您将掌握从模型微调到企业级部署的全链路能力。正如大模型正在构建“AI基础设施”,这项技能将成为您职业发展的核心杠杆。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓