系统架构概述
这个实时数字人系统通过以下模块协同工作:
输入层:支持 WebSocket 文本输入或 ChatGPT API 接入
TTS 引擎:将文本转换为语音(默认使用 Edge TTS)
特征提取:使用 Wav2Vec 模型将音频转换为特征向量
ERNeRF 推理:根据音频特征生成对应嘴型的面部图像
RTMP 推流:使用 C++ FFmpeg API 将音视频流推送到流媒体服务器
核心代码实现
下面是系统核心模块的代码框架:
python
运行
import asyncio
import websocket
import edge_tts
import torch
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from flask import Flask, request
from flask_sockets import Sockets
import json
import subprocess
import threading
# 初始化 Wav2Vec 模型用于音频特征提取
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.wav2vec = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
# TTS 模块 - 负责将文本转换为语音
class TextToSpeech:
def __init__(self):
self.voice = "zh-CN-XiaoxiaoNeural"
self.rate = "+0%"
self.volume = "+0%"
def start_stream(self, video_path, audio_path):
# WebSocket 服务器 - 接收文本输入并控制数字人
app = Flask(__name__)
sockets = Sockets(app)
model = ERNeRFModel("path/to/ernerf_model")
tts = TextToSpeech()
streamer = RtmpStreamer("rtmp://your-server/live/stream_key")
# 生成音频
audio_file = "temp_audio.wav"
asyncio.run(tts.generate_audio(text, audio_file))
# 提取音频特征
audio_features = model.extract_audio_features(audio_file)
# 生成面部图像
face_image = model.inference(audio_features)
# 保存图像并推流
image_file = "temp_frame.png"
face_image.save(image_file)
streamer.start_stream(image_file, audio_file)
部署与优化建议
依赖安装与环境配置
这个系统实现了一个完整的实时数字人文字转语音的流程模式,(ymh6381)通过模块化设计可以方便地替换各组件,例如升级 TTS 引擎或改进 ERNeRF 模型以获得更好的效果。