AI 数字人视频开发逻辑详解:源码搭建指南(支持 OEM)

系统架构概述

这个实时数字人系统通过以下模块协同工作:

输入层:支持 WebSocket 文本输入或 ChatGPT API 接入

TTS 引擎:将文本转换为语音(默认使用 Edge TTS)

特征提取:使用 Wav2Vec 模型将音频转换为特征向量

ERNeRF 推理:根据音频特征生成对应嘴型的面部图像

RTMP 推流:使用 C++ FFmpeg API 将音视频流推送到流媒体服务器

核心代码实现

下面是系统核心模块的代码框架:

python

运行

import asyncio

import websocket

import edge_tts

import torch

import numpy as np

from transformers import Wav2Vec2Processor, Wav2Vec2Model

from flask import Flask, request

from flask_sockets import Sockets

import json

import subprocess

import threading

        # 初始化 Wav2Vec 模型用于音频特征提取

        self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")

        self.wav2vec = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")

 # TTS 模块 - 负责将文本转换为语音

class TextToSpeech:

    def __init__(self):

        self.voice = "zh-CN-XiaoxiaoNeural"

        self.rate = "+0%"

        self.volume = "+0%"

    def start_stream(self, video_path, audio_path):

# WebSocket 服务器 - 接收文本输入并控制数字人

app = Flask(__name__)

sockets = Sockets(app)

model = ERNeRFModel("path/to/ernerf_model")

tts = TextToSpeech()

streamer = RtmpStreamer("rtmp://your-server/live/stream_key")

            # 生成音频

            audio_file = "temp_audio.wav"

            asyncio.run(tts.generate_audio(text, audio_file))

            # 提取音频特征

            audio_features = model.extract_audio_features(audio_file)

            # 生成面部图像

            face_image = model.inference(audio_features)

            # 保存图像并推流

            image_file = "temp_frame.png"

            face_image.save(image_file)

            streamer.start_stream(image_file, audio_file)

部署与优化建议

依赖安装与环境配置

这个系统实现了一个完整的实时数字人文字转语音的流程模式,(ymh6381)通过模块化设计可以方便地替换各组件,例如升级 TTS 引擎或改进 ERNeRF 模型以获得更好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值