2025 CUDA 和 cuDNN 在 Windows 上如何安装配置(保姆级详细版)


一、前期准备,更新显卡驱动(可选)

  1. 如果你之前没有安装过显卡驱动,或者用的一直都是原厂安装版本,建议重新安装,更新显卡驱动。重新安装之后在查看对应的 CUDA 和 cuDNN 版本进行安装。如果你目前使用的是稳定版的显卡驱动,不建议更新,请直接阅读第二点。

  2. 按住 Win+X 打开设备管理器,找到 显示配置器 查看显卡版本,比如:我的显卡是:NVIDIA GeForce RTX 3050 Laptop GPU, 为 RTX 30 系列,Laptop 表示电脑是笔记本。
    在这里插入图片描述

1.1 下载显卡驱动

  1. 官网地址:点击进入 NVIDIA 官网
    打开 NVIDIA 官网,找到 驱动程序, 选择型号后,点击开始搜索

    • 产品类型: GeForce。
    • 产品系列:根据你的显卡型号选择, (Notebooks) 表示你的电脑是笔记本,如果你的电脑是台式机,选择不带(Notebooks)的型号。
    • 产品:根据你的显卡型号选择。
    • 操作系统:根据自己电脑的操作系统进行选择,按住 Win+i 打开设置,选择系统,找到系统信息,查看系统版本。
    • 语言:选择 Chinese(Simplified),简体中文的意思。
    • 下载类型:选择全部。
    • 点击 开始搜索,选择第一个,下载安装。

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  2. 下载完成后点击安装,安装路径保持默认,安装在C盘。选择第二个:NVIDIA 图形驱动程序,点击同意并继续。选择自定义(高级),点击下一步。勾选执行清洁安装,点击下一步,等待安装完毕。

二、安装 CUDA

2.1 查看支持的最高版本

  1. 打开 cmd, 输入:nvidia-smi, nvidia-smi显示的CUDA版本是Driver API支持的最高版本。
    在这里插入图片描述2. 或者打开NVIDIA控制面板查看。Win+S 搜索NIVIDA --> 打开 NVIDIA 控制面板 --> 点击帮助 --> 点击系统信息 --> 点击组件 --> 找到 NVCUDA64.DLL --> 查看版本号,只需要看前两位 12.9.x, 就可以了,进入官网下载:12.9.x 版本。(这里根据自己电脑显卡型号,下载对应版本)
    在这里插入图片描述
    在这里插入图片描述

2.2 下载 CUDA

  1. 下载 CUDA,CUDA 版本应 ≤ nvidia-smi显示的 Driver API支持的最高版本。这里我选择的是:CUDA 12.4.1 版本, 你们根据自己的需求进行选择。
    PyTorch官网:点击进入 PyTorch 官网
    在这里插入图片描述

    下载地址:CUDA官方下载地址
    在这里插入图片描述

  2. 选择 windows, 选择 x86_64, 选择 win_11, 选择 (local),点击下载。
    在这里插入图片描述

2.3 安装 CUDA

  1. 建议保持默认,如果安装在D盘或其他盘可能会安装失败。
    在这里插入图片描述
  2. 选择自定义(高级)
    在这里插入图片描述
  3. 勾选最新版本大于当前版本的选项,若当前版本没有,则代表未安装,需要勾选。【注意】:不同版本的CUDA安装时,选择的组件可能不同,也就是下图你的界面可能与我的界面不同。(如果你是12.4版本,则与我的界面相同)
    在这里插入图片描述
  4. 安装位置保持默认
    在这里插入图片描述
  5. 打开cmd, 输入:nvcc --version,如果输出以下内容则安装成功,否则安装失败。
    在这里插入图片描述

2.4 卸载 CUDA

  1. 打开控制面板(Win+S 搜索),点击程序(卸载程序),卸载 CUDA 12.4, 重新下载安装。
    在这里插入图片描述
    在这里插入图片描述

三、安装 cuDNN

  1. 下载地址:点击进入 cuDNN 下载官网
    注意:下载 cuDNN 需要注册登录 NVIDIA 账号,在 NVIDIA 官网注册登录。
    在这里插入图片描述
    在这里插入图片描述

3.1 解压 cuDNN 文件

  1. 下载之后解压,将加压后的 cuDNN 文件夹中的 bin, include, lib 3个文件夹复制进 CUDA 安装目录中:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
    在这里插入图片描述
  2. 配置环境变量, 打开系统环境变量,找到PATH,双击进行编辑,添加以下内容:
    在这里插入图片描述
  3. 检测 cuDNN 是否安装成功,检查以下路径是否存在 cuDNN 文件:
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include\cudnn.h
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib\x64\cudnn.lib
    

END 配置完成


### 关于CUDA安装教程及未来本(如2025)的兼容性说明 #### CUDA 安装概述 CUDA 是由 NVIDIA 提供的一种并行计算平台编程模型,旨在利用 GPU 进行通用计算。为了确保系统的稳定性性能优化,在安装 CUDA 之前需要确认主机中的 GCC 本以及是否存在多本的情况[^1]。 对于未来的 CUDA 本(例如假设到 2025 年发布的本),其安装流程可能仍然基于当前的最佳实践原则:即根据项目需求选择合适的 CUDA cuDNN 组合,并尽量减少不必要的本冲突[^2]。此外,随着技术的发展,NVIDIA 可能会发布更详细的官方文档来指导开发者完成新本的部署工作。 #### 具体安装步骤示例 以下是基于现有资料整理的一个典型 CUDA 安装过程描述: 1. **下载适合的操作系统对应的 CUDA Toolkit** 用户可以从 NVIDIA 官方网站获取最新或者特定历史本的 CUDA Toolkit 软件包。例如,目前有针对不同操作系统(Windows、MacOS Linux)提供 CUDA 12.x 的支持方案[^3]。 2. **配置必要的环境变量** 成功安装之后,还需要调整 PATH LD_LIBRARY_PATH 等关键路径参数以便让编译器能够找到所需的库文件位置。这部分具体操作取决于目标用户的本地开发环境设定情况[^4]。 3. **验证安装成功与否** 使用 `nvcc --version` 命令检查 NVCC 编译器的状态;另外也可以运行一些简单的测试程序比如 deviceQuery 来进一步检验硬件加速功能是否正常启用。 #### 对于假想中2025年的考虑因素 尽管现在无法确切预测那时的确切规格细节,但从过去几年的趋势来看,以下几个方面可能会成为关注重点: - 更加智能化自动化的工具链集成服务; - 改善跨平台移植性的能力增强措施; - 面向新兴应用场景定制化解决方案推出频率加快等等。 因此建议始终跟踪 NVIDIA 发布的技术博客更新消息源,及时了解任何潜在变化趋势及其影响范围评估方法论等内容资源链接地址列表如下所示: ```bash https://developer.nvidia.com/blog/ ``` ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值