KNN vs SVM

本文探讨了KNN(K-最近邻)与SVM(支持向量机)的区别和SVM的基本原理。KNN算法在处理每个样本时都需要计算,不考虑特征权重,且在高维度下表现不佳。相反,SVM寻找一个最大化样本间隔的分类超平面,并能有效处理高维数据。SVM从线性分类出发,寻找使数据点与超平面间隔最大的超平面,其核心思想是找到最大间隔超平面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.区别

 

       1 KNN对每个样本都要考虑。SVM是要去找一个函数把达到样本可分。

  2 朴素的KNN是不会去自助学习特征权重的,SVN的本质就是在找权重。

  3 KNN不能处理样本维度太高的东西,SVM处理高纬度数据比较优秀。

2.SVM原理梳理

        1.SVM 由线性分类开始(线性分类器。)

          给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的目标是要在n维的数据空间中找到一个超平面(hyper plane),将x的数据点分成两类,且超平面距离两边的数据的间隔最大。

             这个超平面的方程可以表示为( wT中的T代表转置):

         &n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值