直方图-2(对图片中的每个像素值增加50个像素和减去50个像素和灰度直方图——mask)

这篇博客介绍了如何使用OpenCV进行图像处理,包括将图片转换为灰度,计算并显示灰度直方图,以及通过增加和减少像素值改变图像。此外,还展示了如何使用mask提取图像的特定区域并计算其直方图,同时呈现带有mask的图像及其直方图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、对图片中的每个像素值增加50个像素和减去50个像素

 

# 1 导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 2 方法:显示图片
def show_image(image, title, pos):
    #  顺序转换:BGR TO RGB
    image_RGB = image[:, :, ::-1] # shape : (height, width, channel)
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位
    plt.imshow(image_RGB)

# 3 方法:显示图片的灰度直方图
def show_histogram(hist, title, pos, color):
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位图片
    plt.xlabel("Bins") # 横轴信息
    plt.ylabel("Pixels") # 纵轴信息
    plt.xlim([0, 256]) # 范围
    plt.plot(hist, color=color) # 绘制直方图


# 4 主函数 main()
def main():
    # 5 创建画布
    plt.figure(figsize=(15, 6)) # 画布大小
    plt.suptitle("Gray Image Histogram", fontsize=14, fontweight="bold") # 设置标题形式

    # 6 加载图片
    img = cv2.imread("children.jpg")

    # 7 灰度转换
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 8 计算灰度图的直方图
    hist_img = cv2.calcHist([img_gray], [0], None, [256], [0, 256])

    # 9 展示灰度直方图
    # 灰度图转换成BGR格式图片
    img_BGR = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)
    show_image(img_BGR, "BGR image", 1)
    show_histogram(hist_img, "gray image histogram", 4, "m")

    # 10 对图片中的每个像素值增加50个像素
    M = np.ones(img_gray.shape, np.uint8) * 50 # 构建矩阵
    # np.ones()函数返回给定形状和数据类型的新数组,其中元素的值设置为1。  乘以50

    added_img = cv2.add(img_gray, M)
    add_img_hist = cv2.calcHist([added_img], [0], None, [256], [0, 256]) # 计算直方图  列表元素
    added_img_BGR = cv2.cvtColor(added_img, cv2.COLOR_GRAY2BGR)  #BGR
    show_image(added_img_BGR, "added image", 2)
    show_histogram(add_img_hist, "added image hist", 5, "m")

    # 11 对图片中的每个像素值减去50个像素
    subtract_img = cv2.subtract(img_gray, M)
    subtract_img_hist = cv2.calcHist([subtract_img], [0], None, [256], [0, 256]) # 计算直方图
    subtract_img_BGR = cv2.cvtColor(subtract_img, cv2.COLOR_GRAY2BGR)
    show_image(subtract_img_BGR, "subtracted image", 3)
    show_histogram(subtract_img_hist, "subtracted image hist", 6, "m")

    plt.show()

# 调用主函数
if __name__ == '__main__':
    main()

2、灰度直方图——mask

mask : 提取感兴趣区域。

# 1 导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 2 方法:显示图片
def show_image(image, title, pos):
    img_RGB = image[:, :, ::-1]  # BGR to RGB
    plt.title(title)
    plt.subplot(2, 2, pos)
    plt.imshow(img_RGB)

# 3 方法:显示灰度直方图
def show_histogram(hist, title, pos, color):
    plt.subplot(2, 2, pos)
    plt.title(title)
    plt.xlim([0, 256])
    plt.plot(hist, color=color)

# 4 主函数
def main():
    # 5 创建画布
    plt.figure(figsize=(12, 7))
    plt.suptitle("Gray Image and Histogram with mask", fontsize=16, fontweight="bold")

    # 6 读取图片并灰度转换,计算直方图,显示
    img_gray = cv2.imread("children.jpg", cv2.COLOR_BGR2GRAY) # 读取并进行灰度转换
    img_gray_hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256]) # 计算直方图
    show_image(img_gray, "image gray", 1)
    show_histogram(img_gray_hist, "image gray histogram", 2, "m")

    # 7 创建mask,计算位图,直方图
    mask = np.zeros(img_gray.shape[:2], np.uint8)
    mask[130:500, 600:1400] = 255 # 获取mask,并赋予颜色
    img_mask_hist = cv2.calcHist([img_gray], [0], mask, [256], [0, 256])  # 计算mask的直方图
    # 返回来一个给定形状和类型的用0填充的数组;zeros(shape, dtype=float, order=‘C’)
    # shape: 形状  dtype: 数据类型,可选参数,默认numpy.float64  order: 可选参数,c代表与c语言类似,行优先;F代表列优先

    # 8 通过位运算(与运算)计算带有mask的灰度图片
    mask_img = cv2.bitwise_and(img_gray, img_gray, mask = mask)

    # 9 显示带有mask的图片和直方图
    show_image(mask_img, "gray image with mask", 3)
    show_histogram(img_mask_hist, "histogram with masked gray image", 4, "m")

    plt.show()
if __name__ == '__main__':
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

So come on

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值