彩色直方图的基本操作

1直方图是图像中像素强度分布。

2直方图统计了每一个强度值所具有的像素个数。

3cv2.calcHist(images, channels, mask, histSize, ranges)

# 1 导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 2 方法:显示图片
def show_image(image, title, pos):
    plt.subplot(3, 2, pos)
    plt.title(title)
    image_RGB = image[:, :, ::-1] # BGR to RGB
    plt.imshow(image_RGB)
    plt.axis("off")  # 坐标轴关闭

# 3 方法:显示彩色直方图 b, g, r
def show_histogram(hist, title, pos, color):
    plt.subplot(3, 2, pos)
    plt.title(title)
    plt.xlim([0, 256])
    for h, c in zip(hist, color): # color: ('b', 'g', 'r')  元组
        plt.plot(h, color=c)


# 4 方法:计算直方图
def calc_color_hist(image): # 传进来一张图片
    # b, g, r
    hist = [] #空列表,一步一步扩展
    hist.append( cv2.calcHist([image], [0], None, [256], [0, 256]))
    hist.append( cv2.calcHist([image], [1], None, [256], [0, 256]))
    hist.append( cv2.calcHist([image], [2], None, [256], [0, 256]))
    return hist

# 5 主函数
def main():
    # 5.1 创建画布
    plt.figure(figsize=(12, 8))
    plt.suptitle("Color Histogram", fontsize=10, fontweight="bold")

    # 5.2 读取原图片
    img = cv2.imread("children.jpg")

    # 5.3 计算直方图
    img_hist = calc_color_hist(img)

    # 5.4 显示图片和直方图
    show_image(img, "RGB Image", 1)
    show_histogram(img_hist, "RGB Image Hist", 2, ('b', 'g', 'r'))  # 传一个元组bgr,不是m

    # 5.5 原始图片中的每个像素增加50个像素值
    M = np.ones(img.shape, dtype="uint8") * 50

    added_image = cv2.add(img, M) # 像素一一对应相加
    added_image_hist = calc_color_hist(added_image)
    show_image(added_image, 'added image', 3)
    show_histogram(added_image_hist, 'added image hist', 4, ('b', 'g', 'r'))


    # 5.6 原始图片中的每个像素减去50个像素值
    subtracted_image = cv2.subtract(img, M)
    subtracted_image_hist = calc_color_hist(subtracted_image)
    show_image(subtracted_image, 'subtracted image', 5)
    show_histogram(subtracted_image_hist, 'subtracted image hist', 6, ('b', 'g', 'r'))

    plt.show()
if __name__ == '__main__':
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

So come on

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值