(1)直方图是图像中像素强度分布。
(2)直方图统计了每一个强度值所具有的像素个数。
(3)cv2.calcHist(images, channels, mask, histSize, ranges)
# 1 导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np
# 2 方法:显示图片
def show_image(image, title, pos):
plt.subplot(3, 2, pos)
plt.title(title)
image_RGB = image[:, :, ::-1] # BGR to RGB
plt.imshow(image_RGB)
plt.axis("off") # 坐标轴关闭
# 3 方法:显示彩色直方图 b, g, r
def show_histogram(hist, title, pos, color):
plt.subplot(3, 2, pos)
plt.title(title)
plt.xlim([0, 256])
for h, c in zip(hist, color): # color: ('b', 'g', 'r') 元组
plt.plot(h, color=c)
# 4 方法:计算直方图
def calc_color_hist(image): # 传进来一张图片
# b, g, r
hist = [] #空列表,一步一步扩展
hist.append( cv2.calcHist([image], [0], None, [256], [0, 256]))
hist.append( cv2.calcHist([image], [1], None, [256], [0, 256]))
hist.append( cv2.calcHist([image], [2], None, [256], [0, 256]))
return hist
# 5 主函数
def main():
# 5.1 创建画布
plt.figure(figsize=(12, 8))
plt.suptitle("Color Histogram", fontsize=10, fontweight="bold")
# 5.2 读取原图片
img = cv2.imread("children.jpg")
# 5.3 计算直方图
img_hist = calc_color_hist(img)
# 5.4 显示图片和直方图
show_image(img, "RGB Image", 1)
show_histogram(img_hist, "RGB Image Hist", 2, ('b', 'g', 'r')) # 传一个元组bgr,不是m
# 5.5 原始图片中的每个像素增加50个像素值
M = np.ones(img.shape, dtype="uint8") * 50
added_image = cv2.add(img, M) # 像素一一对应相加
added_image_hist = calc_color_hist(added_image)
show_image(added_image, 'added image', 3)
show_histogram(added_image_hist, 'added image hist', 4, ('b', 'g', 'r'))
# 5.6 原始图片中的每个像素减去50个像素值
subtracted_image = cv2.subtract(img, M)
subtracted_image_hist = calc_color_hist(subtracted_image)
show_image(subtracted_image, 'subtracted image', 5)
show_histogram(subtracted_image_hist, 'subtracted image hist', 6, ('b', 'g', 'r'))
plt.show()
if __name__ == '__main__':
main()