Generative Model(李宏毅)机器学习 2023 Spring HW6(Boss Baseline)

1. Introduction to Image Generation

图像生成指的是使用算法或计算模型从头开始创建图像或视觉内容的过程。这一过程通常利用深度学习技术,模型根据输入数据(如文本、图像片段或其他信号)生成高质量的视觉输出。图像生成在艺术创作、内容生成、游戏设计、医学影像等领域有着广泛的应用。

以下将解释几种常用的图像生成模型类型

1.1 Variational Auto-encoder (VAE)

变分自动编码器(VAE)是一种生成模型,通过学习数据潜在空间的分布来生成新的图像。VAE的核心思想是将输入图像编码为潜在变量的概率分布,而不是固定的潜在向量。

VAE (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/ImageGeneration%20(v3).pdf)

作为一种图像生成模型,VAE通过从潜在空间采样潜在变量并将其输入解码器来生成新图像。生成的图像通常比较模糊,但VAE具有良好的训练稳定性和多样性。

有关详细描述和相关数学概念,请参考我的另一篇文章:

成贤街的猫:(李宏毅)机器学习 2023 Spring HW83 赞同 · 0 评论文章

VAE (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/ImageGeneration%20(v3).pdf)

1.2 Flow-based Generative Model

Flow-based Generative Models 是一类通过可逆变换生成数据的模型。其核心思想是通过一系列可逆函数将简单分布(如标准正态分布)映射到复杂数据分布(如图像数据)。这些变换是可逆的,允许通过逆变换从数据空间精确恢复潜在空间表示,从而实现图像生成和重建。

Flow-based Generative Model (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/ImageGeneration%20(v3).pdf)

流基模型的主要特点是:

  1. 可逆性: 每个变换必须是可逆的,允许在训练期间进行精确的概率计算。

  2. 显式概率密度: 流模型可以显式计算数据的概率密度,这意味着生成的图像不仅高质量,而且具有可计算的生成概率。

这些模型通常由一系列变换组成,逐渐将简单的潜在分布转换为复杂的数据分布。训练过程通过最大化似然函数来优化模型。

作为一种图像生成模型,流基模型通过逆变换过程生成图像,产生高质量的图像,并具有可计算的概率密度。

1.3 Diffusion Model

扩散模型是一种基于逐渐添加噪声和去噪过程来生成数据的生成模型。其核心思想是逐渐向真实数据(如图像)添加噪声,直到数据变成纯噪声,然后训练一个神经网络模型来学习如何去除噪声并恢复原始数据。这个过程类似于物理学中的粒子扩散,数据从清晰状态逐渐“扩散”到噪声状态,然后通过逆过程恢复。

Diffusion Model (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/ImageGeneration%20(v3).pdf)

扩散模型的主要步骤是:

  1. 前向过程: 逐渐向数据添加噪声,直到其变成纯噪声。这是一个马尔可夫过程,每一步都添加少量噪声。

  2. 反向过程: 训练一个神经网络模型来逆转前向过程,去噪并恢复数据的原始外观。通过最大化似然估计来训练模型。

作为一种图像生成模型,扩散模型通常使用预训练的去噪神经网络,从纯噪声开始生成清晰图像,逐步在每一步去除噪声。与其他生成模型相比,扩散模型可以提供高质量的细节和多样性的生成图像,同时具有更稳定的训练过程。

1.3.1 Denoising Diffusion Probabilistic Models (DDPM)

DDPM 的核心思想是模拟数据扩散(在多个步骤中添加噪声)的过程,并学习如何逆转它(去噪)以生成真实样本。

DDPM Traning-0 (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf)

DDPM Traning-1 (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf)

DDPM Traning-2 (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf)

前向步骤是一个逐步将真实数据与随机高斯噪声进行破坏的过程。通过这个逐步的过程,原始数据被转化为接近各向同性的高斯噪声。

从一个真实的数据样本 x_0 (例如,一张图像)开始,噪声按照预定义的计划逐步添加,生成逐渐变得更噪声的数据 \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T​。 在第 t步,噪声数据通过以下公式生成:

### 李宏毅机器学习笔记中的GAN相关内容 #### GAN基本概念 生成对抗网络Generative Adversarial Networks, GANs)由两个主要部分组成:生成器(Generator)和判别器(Discriminator)。生成器的目标是从随机噪声中生成逼真的样本,而判别器则试图区分这些生成的样本与真实的数据样本。两者通过相互竞争的方式共同训练,最终达到纳什均衡状态,在此状态下生成器能够生成几乎无法被识别出来的假样本[^4]。 #### 条件GAN的应用扩展 条件GAN是在标准GAN的基础上进行了改进,允许模型基于特定条件来控制生成的内容。具体而言,除了提供给生成器和判别器的标准输入外,还会附加一段描述期望特性的向量作为额外输入。这段向量可以是由文本转换而成的表示形式,从而指导生成过程按照指定的主题或风格进行创作。例如,可以通过输入一段文字说明让GAN创建具有相应属性的人脸图片;同样地,也支持利用语音信号引导图像合成任务。 #### 训练技巧与优化策略 为了提高GAN及其变体的有效性和稳定性,研究者们提出了多种辅助技术: - **Learning Rate Scheduling**: 动态调整学习率有助于改善收敛性能并防止过拟合现象的发生。一种常见的做法是采用Warm-Up机制——初期保持较低水平的学习速率以便充分探索损失曲面特性,随后逐步增加直至某个峰值后再缓慢降低,以此促进全局最优解的发现[^5]。 - **Regularization Methods**: 正则化手段如Dropout对于增强泛化能力至关重要。特别是在卷积神经网络架构下运用时,不仅能有效缓解过拟合风险,还能促使特征提取更加鲁棒可靠[^3]. ```python import torch.nn as nn class Generator(nn.Module): def __init__(self, input_dim=100, output_channels=3): super(Generator, self).__init__() # 定义生成器结构... def forward(self, z, condition_vector=None): # 实现前向传播逻辑... pass class Discriminator(nn.Module): def __init__(self, input_channels=3): super(Discriminator, self).__init__() # 定义判别器结构... def forward(self, image, condition_vector=None): # 实现前向传播逻辑... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值